Problem Description

Next Closest Time

Givena time represented in the format "HH:MM" , form the next closest time by reusing the current digits. There is no limit on how

many times a digit can be reused.

You may assume the given input string is always valid. For example, "01:34" , "12:09" are all valid. "1:34" , "12:9" are all invalid.

Example 1:

Input: time = "19:34"

Output: "19:39"

Explanation: The next closest time choosing from digits 1, 9, 3, 4, is 19:39, which occurs 5 minutes la
It is not 19:33, because this occurs 23 hours and 59 minutes later.

Example 2:

Input: time = "23:59"

Output: "22:22"

Explanation: The next closest time choosing from digits 2, 3, 5, 9, is 22:22.

It may be assumed that the returned time is next day's time since it is smaller than the input time num

Constraints:

e« time.length ==

o time is avalid time in the form "HH:MM" .
e 0 <=HH < 24

e 0 <=MM < 60

Analysis

01:34

H2

{0,1
M1
M2

I3I4}

== 3 Return 01:43

{1,3,4,9}
19:34 - 19:39

{1,3

,9}

19:39 - 11:11

{2,3

I5I9}

23:59 > 22:22

H2




O0<=H2<=1and0<=H1<=9 0<=M2<=5and0<=M1<=9
H2=2and0<=H1<=3 0<=M2<=5and0<=M1<=9

e 0O <=HH < 24
e O <= MM < 60

Algorithm

Read in all distinct numbers: S, rank it.

ab:cd

For M1, test if there exists e in S such that d < e <= 9. If yes, return ab:ce.

For M2, test if there exists e in S such that c < e <= 5. If yes, return ab:ed’, where d’ = min(S).

For H1,
If H2 =2, test if there exists e in S such that b < e <= 3. If yes, return ae:d’d’, where d’ = min(S).
Else, test if there exists e in S such that b < e <= 9. If yes, return ae:d’d’, where d’ = min(S).

Else, find e = min(S). Return worstCase(S).
For H2, test if there exists e in S such that a < e <=2, If yes, return ed’:d’d’, where d’ = min(S).
Else, call worstCase(S).

Method: worstCase

This method takes in S and return ee:ee where e = min(S).



