Monday Feb 28th

Maximize Distance to Closest Person Solution 3

You are given an array representing a row of seats where seats[i] = 1 represents a person sitting in the ith seat,
and seats[i]l = @ represents that the ith seatis empty (0-indexed).

There is at least one empty seat, and at least one person sitting.
Alex wants to sit in the seat such that the distance between him and the closest person to him is maximized.

Return that maximum distance to the closest person.

Example 1:

A
N
v
A

N
\

& & = @ & @

0 1 2 3 4 5 6

Input: seats = [1,0,0,0,1,0,1]

Output: 2

Explanation:

If Alex sits in the second open seat (i.e. seats[2]), then the closest person has distance Z
If Alex sits in any other open seat, the closest person has distance 1.

Thus, the maximum distance to the closest person is 2.

Example 2:

Input: seats = [1,0,0,0]

Output: 3

Explanation:

If Alex sits in the last seat (i.e. seats[3]), the closest person is 3 seats away.
This is the maximum distance possible, so the answer is 3.

Example 3:

Input: seats = [0,1]
OQutput: 1

Constraints:

e 2 <= seats.length <= 2 x 10%
o seats[i] is @ or 1.
* At least one seat is empty.

* At least one seat is occupied.

The Bruteforce Solution: 0(n?)

package leetcode;
public class Problem@228_Solution {
public static void main(String[] args) {
int[] seats = { 0, 0, 1 };
System. out.println(findClosestSeat(seats, 0));
}
public static int maxDistToClosest(int[] seats) {

int maxDistance = 0;
// Edge case: When there are two seats and one of them is empty
Hf (seats.length = 2) {

maxDistance = 1;

Y // When there are more than two seats

lelse {
for (int i = 0; 1 < seats.length; i++) {
// When the seat ith is empty
if (seats[i] == @) {
// Check the closest neightbour
int localMaxDistance = findClosestSeat(seats, i);

maxDistance = Math.max(maxDistance, localMaxDistance);

H

return maxDistance;

}

/*

* This method takes in an array representing a row of seats, an index i
* indicating an empty seat, and returns the closest distance between the
* current seat and an occupied seat. This method assumes there are more
* than two seats, at least one seat is empty, and at least one seat is

* occupied.

*/
public static int findClosestSeat(int[] seats, int i) {

int closestDist = 0;
int seatCount = seats.length;
for (int j =1 - 1; j >= 0; j--) {// Left pointer searches to the left
if (seats[j] == 1) {
closestDist = i - j;

break;

}
for (int j = 1 + 1; j < seatCount; j++) {// Right pointer searches to the

right

. [Commented [SL1]: Time complexity: O(n”2)

. [Commented [SL2]: Time complexity: O(1)

: [Commented [SL3]: Time complexity: O(n*n)

[Commented [SL4]: Time complexity: O(n)

if (seats[j] == 1) {

if (closestDist == @) {
// Given the assumption, it's not possible when closetDist == @, because we
//know there must be at least one occupied seat. Hence in this case, it

means that we are given the first seat index.

closestDist = j - 1i;

} else {
closestDist = Math.min(closestDist, j - i);

}

break;

3

return closestDist;

Maximize Distance to Closest Person
Submission Detail

81/81 test cases passed. status: Accepted

Runtime: 2 ms

Submitted: O minute
Memory Usage: 44.2 MB ubmitted: 0 minutes ago

Accepted Solutions Runtime Distribution

Wjava
12 1a 16 18 20 2
Runtime (ms)
00 25 50 75 100 125 150 175 200
Zoom area by dragging across this chart
pted Memory Di:
10 mjava
8
6
4
2
RS,
39000 40000 41000 42000 43000 44000 45000 46000 47000 48000 49000
Memory (KB)
10|
5
39000 40000 41000 42000 43000 44000 45000 46000 47000 48000 49000

Zoom area by dragging across this chart
Invite friends to challenge Maximize Distance to Closest Person

The Next Array Solution: 0(n)

The problem is reduced to finding the closest left/right distance of each empty seat.

When a seats[i] is occupied (i.e., seats[i] == 1), then the closest left/right distance is
0, because we cannot sit in that seat.

When a seats[i] is unoccupied (i.e., seats[i] == 0), then the closest left distance is
left[i] = left[i-1] + 1, the closest right distance is right[i] = right[i+1] + 1;

For the leftmost seat (i.e., seats[0]), if it is unoccupied, left[0] = N;

For the rightmost seat (i.e., seats[N-1]), if it is unoccupied, right[N-1] = N.

Apparently, when seats[0] = 1 and seats[N-1] = 1, this algorithm works.
Now we need to show that the algorithm works for seats[0] = 0 or seats[N-1] = 0.

Case 1: When seats[0] = 0 and seats[N-1] = 1.
Case 1.1 Seats =10, 0, ..., 0,0,0, ..., 0, 1]
Case 1.2 Seats =10, O, ..., 0,1,0, ..., 0, 1]
left = [N, N+1, ..., N+n, 0, 1, ..., (N-n-3), 0]
right = [n+1,n, ..., 1,0, (N-n-3), ..., 1, 0]
Case 2: When seats[0] = 1 and seats[N-1] = 0.

Case 3: When seats[0] = 1 and seats[N-1] = 1.

package leetcode;
import java.util.Arrays;

public class Problem@228_Solution2 {
public static void main(String[] args) {
int[] seats = { 0, @, 1 };
System. out.println(maxDistToClosest(seats));

public static int maxDistToClosest(int[] seats) {
int N = seats.length;
int[] left = new int[N], right = new int[N];
Mrrqys.fill(left, N);
Arrays. FfilI(right, N);

ffor (int i = 0; i < N; ++i) {
if (seats[i] == 1)
1left[i] = 0;

Commented [SL5]: To fill complete the array with a

particular value N.

| Commented [SL6R5]: However, | couldn’t explain in an

intuitive way why we should start with default N for both left

and right at each position.

else if (i > @)
left[i] = left[i - 1] + 1;
¥

ffor (int i = N - 1; i >= 0; --i) {
if (seats[i] == 1)
right[i] = 0;
else if (i < N - 1)
right[i] = right[i + 1] + 1;
H

int ans = 0;
ffor (int i = 0; i < N; ++i)
if (seats[i] == @)
ans = Math.maxCans, Math.min(left[i], right[i]));

return ans;

}
}
Example 1:
Seats={1,0,0, 1, 0}
Seat Index 0 1 2
Occupancy 1 0 0 1
Left:
Seat Index 0 1 2 3
Closest distance| 0 1 2 0
Right:
Seat Index 0 1 3
Closest distance| 0 2 1 0
The closest distance to:
Seat Index 0 1 2 3
Closest distance| 0 1 1 0
Example 2:
Seats={1, 0,0, 0, 0}
Seat Index 0 1 2 3
Occupancy 1 0 0 0

Commented [SL7]: Time complexity: O(n)
Construct left[i]: the closest person to the left of an empty

seat ith.

Commented [SL8]: Time complexity: O(n)
Construct right[i]: the closest person to the right of an empty

seat ith.

Commented [SL9]: Time complexity: O(n).
The closest person to an empty seat ith is of a distance

min(left[i], right[i]) away.

Left:

Seat Index 0

Closest distance| 0

Right:

Seat Index 0

Closest distance| 0

The closest distance to:

Seat Index 0

Closest distance| 0

Example 2’:
Seats={1, 0, 0, 0, 0}
Seat Index 0
Occupancy 1
Left:
Seat Index 0
Closest distance| 0

Right:

Seat Index 0

Closest distance| 5

The closest distance to:

Seat Index 0

Closest distance| 0

Example 3:
Seats={0, 1,0, 0, 0}
Seat Index 0
Occupancy 0
Left:
Seat Index 0

Closest distance| 5

Right:

Seat Index

Closest distance| 1

The closest distance to:

Seat Index 0 1

Closest distance| 1 0 1 2 3
Example 4:
Seats={0, 1,0, 1, 0}

Seat Index 0 1 2 3 4

Occupancy 0 1 0 1 0
Left:

Seat Index 0 1 2 3

Closest distance| 5 0 1 0 1
Right:

Seat Index 0 1 2 3

Closest distance| 1 0 1 0 5

The closest distance to:
Seat Index 0 1 2 3
Closest distance| 1 0 1 0 1

The Two Pointers Solution: 0(n)

The problem is reduced to finding the maximum distance between two continuous 1 in an array,

and just return half of that maximum value. \We also need to consider two edge cases.] Commented [SL10]: Not sure how to work with the edge

package leetcode; case

public class Problem@228_Solution3 {
public static void main(String[] args) {
int[] seats = { 1, 0, @, 0 };

System. out.println("Result: + maxDistToClosest(seats));
}
public static int maxDistToClosest(int[] seats) {

int left = -1, maxDis = 0;

int len = seats.length;

for (int i = 0; i < len; i++) {
if (seats[i] == 0)
continue;
if (left == -1) {
maxDis = Math.max(maxDis, i);
1 else {
maxDis = Math.max(maxDis, (i - left) / 2);

left = 1i;

if (seats[len - 1] == 0) {

maxDis = Math.max(maxDis, len - 1 - left);

}
return maxDis;
}
}
Example 1:
Seats={1,0,0, 1, 0}
Seat Index 0 1 2
Occupancy 1 0 0 1

left =-1, maxDis =0, len=5

i=0,left=-1
maxDis = max(0,0) =0
left=0
i=1, continue
i=2, continue
i=3,left=0
maxDis = max(0,1) = 1
left=3
i =4, continue

Because seats[4] ==
len-1-left=5-1-3=1
maxDis = max(1,1) =1

Example 2:

Seats ={1, 0, 0, O, 0}
Seat Index 0 1 2 3
Occupancy 1 0 0

left =-1, maxDis=0, len=5

i=0,left=-1
maxDis = max(0,0) =0
left=0

i=1, continue

i=2, continue

i =3, continue

i =4, continue

Because seats[4] ==
len-1-left=5-1-0=4

maxDis = max(0, 4) =4

