
Monday Feb 28th

The Bruteforce Solution: 𝑶(𝒏𝟐)

package leetcode;

public class Problem0228_Solution {

public static void main(String[] args) {

 int[] seats = { 0, 0, 1 };

 System.out.println(findClosestSeat(seats, 0));
}

 public static int maxDistToClosest(int[] seats) {

 int maxDistance = 0;

 // Edge case: When there are two seats and one of them is empty

 if (seats.length == 2) {

 maxDistance = 1;

 } // When there are more than two seats

 else {

 for (int i = 0; i < seats.length; i++) {

 // When the seat ith is empty

 if (seats[i] == 0) {

 // Check the closest neightbour

 int localMaxDistance = findClosestSeat(seats, i);
 maxDistance = Math.max(maxDistance, localMaxDistance);
 }

 }

 }

 return maxDistance;

 }

 /*

 * This method takes in an array representing a row of seats, an index i

 * indicating an empty seat, and returns the closest distance between the

 * current seat and an occupied seat. This method assumes there are more

 * than two seats, at least one seat is empty, and at least one seat is

 * occupied.

 */

 public static int findClosestSeat(int[] seats, int i) {

 int closestDist = 0;

 int seatCount = seats.length;

 for (int j = i - 1; j >= 0; j--) {// Left pointer searches to the left

 if (seats[j] == 1) {

 closestDist = i - j;

 break;

 }

 }

 for (int j = i + 1; j < seatCount; j++) {// Right pointer searches to the right

Commented [SL1]: Time complexity: O(n^2)

Commented [SL2]: Time complexity: O(1)

Commented [SL3]: Time complexity: O(n*n)

Commented [SL4]: Time complexity: O(n)

 if (seats[j] == 1) {

 if (closestDist == 0) {

 // Given the assumption, it's not possible when closetDist == 0, because we

//know there must be at least one occupied seat. Hence in this case, it

means that we are given the first seat index.

 closestDist = j - i;

 } else {

 closestDist = Math.min(closestDist, j - i);
 }

 break;

 }

 }

 return closestDist;

 }

}

The Next Array Solution: 𝑶(𝒏)

The problem is reduced to finding the closest left/right distance of each empty seat.
When a seats[i] is occupied (i.e., seats[i] == 1), then the closest left/right distance is
0, because we cannot sit in that seat.
When a seats[i] is unoccupied (i.e., seats[i] == 0), then the closest left distance is
left[i] = left[i-1] + 1, the closest right distance is right[i] = right[i+1] + 1;
For the leftmost seat (i.e., seats[0]), if it is unoccupied, left[0] = N;
For the rightmost seat (i.e., seats[N-1]), if it is unoccupied, right[N-1] = N.

Apparently, when seats[0] = 1 and seats[N-1] = 1, this algorithm works.
Now we need to show that the algorithm works for seats[0] = 0 or seats[N-1] = 0.

Case 1: When seats[0] = 0 and seats[N-1] = 1.
 Case 1.1 Seats = [0, 0, …, 0,0,0, …, 0, 1]
 Case 1.2 Seats = [0, 0, …, 0,1,0, …, 0, 1]
 left = [N, N+1, …, N+n, 0, 1, …, (N-n-3), 0]
 right = [n+1, n, …, 1, 0, (N-n-3), …, 1, 0]
Case 2: When seats[0] = 1 and seats[N-1] = 0.

Case 3: When seats[0] = 1 and seats[N-1] = 1.

package leetcode;

import java.util.Arrays;

public class Problem0228_Solution2 {

 public static void main(String[] args) {

 int[] seats = { 0, 0, 1 };

 System.out.println(maxDistToClosest(seats));
 }

 public static int maxDistToClosest(int[] seats) {

 int N = seats.length;

 int[] left = new int[N], right = new int[N];

 Arrays.fill(left, N);
 Arrays.fill(right, N);

 for (int i = 0; i < N; ++i) {

 if (seats[i] == 1)

 left[i] = 0;

Commented [SL5]: To fill complete the array with a

particular value N.

Commented [SL6R5]: However, I couldn’t explain in an

intuitive way why we should start with default N for both left

and right at each position.

 else if (i > 0)

 left[i] = left[i - 1] + 1;

 }

 for (int i = N - 1; i >= 0; --i) {

 if (seats[i] == 1)

 right[i] = 0;

 else if (i < N - 1)

 right[i] = right[i + 1] + 1;

 }

 int ans = 0;

 for (int i = 0; i < N; ++i)

 if (seats[i] == 0)

 ans = Math.max(ans, Math.min(left[i], right[i]));
 return ans;

 }

}

Example 1:
Seats = {1, 0, 0, 1, 0}

Seat Index 0 1 2 3 4
Occupancy 1 0 0 1 0

Left:

Seat Index 0 1 2 3 4
Closest distance 0 1 2 0 1

Right:

Seat Index 0 1 2 3 4
Closest distance 0 2 1 0 5

The closest distance to:

Seat Index 0 1 2 3 4
Closest distance 0 1 1 0 1

Example 2:
Seats = {1, 0, 0, 0, 0}

Seat Index 0 1 2 3 4
Occupancy 1 0 0 0 0

Commented [SL7]: Time complexity: O(n)

Construct left[i]: the closest person to the left of an empty

seat ith.

Commented [SL8]: Time complexity: O(n)

Construct right[i]: the closest person to the right of an empty

seat ith.

Commented [SL9]: Time complexity: O(n).

The closest person to an empty seat ith is of a distance

min(left[i], right[i]) away.

Left:
Seat Index 0 1 2 3 4
Closest distance 0 1 2 3 4

Right:

Seat Index 0 1 2 3 4
Closest distance 0 8 7 6 5

The closest distance to:

Seat Index 0 1 2 3 4
Closest distance 0 1 2 3 4

Example 2’:
Seats = {1, 0, 0, 0, 0}

Seat Index 0 1 2 3 4
Occupancy 1 0 0 0 0

Left:

Seat Index 0 1 2 3 4
Closest distance 0 1 2 3 4

Right:

Seat Index 0 1 2 3 4
Closest distance 5 3 2 1 0

The closest distance to:

Seat Index 0 1 2 3 4
Closest distance 0 1 2 1 0

Example 3:
Seats = {0, 1, 0, 0, 0}

Seat Index 0 1 2 3 4
Occupancy 0 1 0 0 0

Left:

Seat Index 0 1 2 3 4
Closest distance 5 0 1 2 3

Right:

Seat Index 0 1 2 3 4
Closest distance 1 0 7 6 5

The closest distance to:

Seat Index 0 1 2 3 4
Closest distance 1 0 1 2 3

Example 4:
Seats = {0, 1, 0, 1, 0}

Seat Index 0 1 2 3 4
Occupancy 0 1 0 1 0

Left:

Seat Index 0 1 2 3 4
Closest distance 5 0 1 0 1

Right:

Seat Index 0 1 2 3 4
Closest distance 1 0 1 0 5

The closest distance to:

Seat Index 0 1 2 3 4
Closest distance 1 0 1 0 1

The Two Pointers Solution: 𝑶(𝒏)

The problem is reduced to finding the maximum distance between two continuous 1 in an array,
and just return half of that maximum value. We also need to consider two edge cases.
package leetcode;

public class Problem0228_Solution3 {

public static void main(String[] args) {

 int[] seats = { 1, 0, 0, 0 };

 System.out.println("Result: " + maxDistToClosest(seats));
 }

 public static int maxDistToClosest(int[] seats) {

 int left = -1, maxDis = 0;

 int len = seats.length;

 for (int i = 0; i < len; i++) {

 if (seats[i] == 0)

 continue;

 if (left == -1) {

 maxDis = Math.max(maxDis, i);
 } else {

 maxDis = Math.max(maxDis, (i - left) / 2);
 }

Commented [SL10]: Not sure how to work with the edge

case.

 left = i;

 }

 if (seats[len - 1] == 0) {

 maxDis = Math.max(maxDis, len - 1 - left);
 }

 return maxDis;

 }

}

Example 1:
Seats = {1, 0, 0, 1, 0}

Seat Index 0 1 2 3 4
Occupancy 1 0 0 1 0

left = -1, maxDis = 0, len = 5
i = 0, left = -1
 maxDis = max(0,0) = 0
 left = 0
i = 1, continue
i = 2, continue
i = 3, left = 0
 maxDis = max(0,1) = 1
 left = 3
i = 4, continue
Because seats[4] == 0
 len - 1 – left = 5 – 1 – 3 = 1
 maxDis = max(1, 1) = 1

Example 2:
Seats = {1, 0, 0, 0, 0}

Seat Index 0 1 2 3 4
Occupancy 1 0 0 0 0

left = -1, maxDis = 0, len = 5
i = 0, left = -1
 maxDis = max(0,0) = 0
 left = 0
i = 1, continue
i = 2, continue
i = 3, continue
i = 4, continue
Because seats[4] == 0
 len - 1 – left = 5 – 1 – 0 = 4

 maxDis = max(0, 4) = 4

