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Our Motivations

A family of quantum circuits < A group of matrices.

Studying matrix groups is a way to study quantum circuits.

For the matrix group associated with the Toffoli-Hadamard circuits, use a
convenient set of generators and study the factorization of group
elements into a sequence of these generators.

= The exact synthesis algorithm

e A factorization is optimal if the sequence is a shortest possible sequence.

Each generator can be expressed as a short circuit.
= A good solution to this factorization problem yields a good synthesis.
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The Local Synthesis )
¢ The gate complexity of the exactly

synthesized circuit: 0(2"log(n)k)

Algorithm

The Householder

[Kliuchnikov 2013]  0(n%log(n)k)

Synthesis Algorithm

[1] Kliuchnikov, V. (2013). Synthesis of unitaries with Clifford+ T circuits. arXiv preprint

arXiv:1306.3200.



The Local §ynthe5|s ¢ The gate complexity of the exactly
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[Kliuchnikov 2013] The Householder
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Synthesis Algorithm (n®log(n)k)

[Russell 2014] The Global
[Niemann et al 2020] Synthesis Algorithm RS
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Orthogonal Dyadic Matrices

o Z|3] = {#%|u € Z,q € N} is the ring of dyadic fractions.

e 0,(Z[%]) is the group of orthogonal dyadic matrices, which consists of
n x n orthogonal matrices of the form M /2, where M is an integer matrix
and k is a nonnegative integer. For short, we denote it as O,,.

Example: U € O5

3/4  1/4 -1/4 1/4  1/2
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U=|-1/4 1/4 3/4 1/4 1/2
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Orthogonal Dyadic Matrices

o Z|3] = {#%|u € Z,q € N} is the ring of dyadic fractions.
e 0,(Z[%]) is the group of orthogonal dyadic matrices, which consists of

n x n orthogonal matrices of the form M /2%, where M is an integer matrix
and k is a nonnegative integer. For short, we denote it as O,,.

Example: U € O5

3 1 -1 1 2

1 1 3 1 -1 -2

U=—=1|-1 1 3 1 2
92

1 -1 1 3 =2

-2 2 -2 2 0



The Circuit-Matrix Correspondence |

Theorem (The AGR Algorithm)

For an n-dimensional orthogonal matrix U, it can be exactly represented by a
circuit over {X,CX,CCX,K} iffU € O,,.

TAmy, M., Glaudell, A. N., & Ross, N. J. (2020). Number-theoretic characterizations of some
restricted Clifford+T circuits. Quantum, 4, 252.
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The Circuit-Matrix Correspondence |

Theorem (The AGR Algorithm)

For an n-dimensional orthogonal matrix U, it can be exactly represented by a
circuit over {X,CX,CCX,K} iffU € O,,.

Gn ={(-Dal- X[apl- Klapy.6) 1 <@ <B<y<d<n}.

e When n = 2™, every operator in G, can be exactly represented by O(log(n))
operatorsin {X,CX,CCX,K}.

Theorem (The AGR Algorithm)

For an n-dimensional orthogonal matrix U, it can be written as a product of
elements of G, iffU € O,.

TAmy, M., Glaudell, A. N., & Ross, N. J. (2020). Number-theoretic characterizations of some
restricted Clifford+T circuits. Quantum, 4, 252.



The Two-Level Operator: U, g

LetU =

X1,1 x1,2]. The action of U, 4], 1 < @ < B < n, is defined as

X2,1 X2,2
ol
wg Vg

Ulap)v = w, Where {

wi =v;,i ¢ {a,B}.
1 0 0 0 Vi V1
|01 |00 1 0 val _ |vs
LetX_[1 0].Then X231= |0 1 0 o and X, 3 vl = Il
0 0 0 1 V4 V4



The Four-Level Operator: U, 3.4

Similarly, we can create a four-level operator by embedding a 4 x 4 matrix U
into an n x n identity matrix.

12 12 0 1/2 0 1/2
11 1 1 12 -1/2 0 1/2 0 -1/2
111 -1 1 -1 0 0 1 0 0 0
LetK=211 1 1 —q| ThenKizaa =119 179 ¢ —1/2 0 -1/2|"
1 -1 -1 1 0 0 0 0 1 0
12 -1/2 0 -1/2 0 1/2
Vi (V1+V2+V4+V6)/2
1) (vi—va+vy—v6)/2
K(1,2,4,6] ME '3 .
SRRy (vi+v2 —vg—vg)/2
Vs Vs
Ve (vi—v2 —va+vg)/2



The AGR Algorithm

¢ The algorithm proceeds one column at a time, reducing each column to a
corresponding basis vector.

. . — . . . .
¢ While outputting a word G, after each iteration, the algorithm recursively
acts on the input matrix until it is reduced to the identity matrix I.

0 0
M G a_;
0 0j1 0
0 010 1
= -1 -1
Gy GM=1=>M=G, - G
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The Least Denominator Exponent (LDE)

Letr e Z[3]. 1 = %, wherea € Zand k € N. k is a denominator exponent for t. The
minimal such k is called the least denominator exponent of t, written lde(z).

Example: lde(v) =6

54 [27] 27

62 31 31

98 49 49
12| 1] 1
V5T l2|T 71| T 261
2 1 1

2 1 1

2] 1] 1]

10



The Least Denominator Exponent (LDE)

Letr e Z[%] t= 2%, where a € Zand k € N. k is a denominator exponent for t. The
minimal such k is called the least denominator exponent of ¢, written lde(r).

Example: lde(v) =6

54 [27] 27

62 31 31

98 49 49
C1f2| 1] 1
VEST 2| T T 1| T 261
2 1 1

2 1 1

2] 1] 1]

10



The Least Denominator Exponent (LDE)

Letr e Z[3]. 1 = %, wherea € Zand k € N. k is a denominator exponent for t. The
minimal such k is called the least denominator exponent of t, written lde(z).

Example: lde(v) =6

54 [27] 27

62 31 31

98 49 49
12| 1] 1
Vo2 To7 1| T 6|1
2 1 1

2 1 1
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The Least Denominator Exponent (LDE)

Letrez[3].1= &, where a € Zand k € N. k is a denominator exponent for . The
minimal such k is called the least denominator exponent of t, written lde(r).

IBENNIEE LDE of a column vector B EVNIEH LDE of a matrix
[54] [27] [27] -1 11 0 1 0 0 0
62 31 31 -1 -1 0 1 0 1 00
98 49 49 -1 1 -1 0 -1 0 0 0
12| 1] 1 1|-1 -1 0 -1 0 -1 0 0
Ve 2| T 1| T 26 |1 U500 0 1 1 -1 -1 0 0
2 1 1 0 0 1 -1 -1 1 0 0
2 1 1 o o0 o 0 0 0 20
2] 1] 1] 00 0 0 0 0 0 2

lde(v) =6 lde(U) =1

10



Lemma (Base Case)

Letv e Z[1]" be a unit vector with 1de(v) = k. If k =0, v = +e; for some j € {1,...,n}.

n



Lemma (Base Case)

Letv e Z[1]" be a unit vector with 1de(v) = k. If k =0, v = +e; for some j € {1,...,n}.

Lemma (Weight)

Letv e Z[1]" be a unit vector with 1de(v) = k. Let w = 2v. If k > 0, the number of
odd entries in w is a multiple of 4.

n



Lemma (Base Case)

Letv e Z[%]" be a unit vector with 1de(v) = k. If k =0, v = e, for some j € {1,...,n}

Lemma (Weight)

Letv e Z[1]" be a unit vector with 1de(v) = k. Let w = 2v. If k > 0, the number of
odd entries in w is a multiple of 4.

Lemma (Parity Reduction)

Let u1,us,us,uy be odd integers. Then there exist v, 1, 13,74 € Z such that

Uy uy
" T T & Uz _ M’2 ror 2
K[1,2,3,4](—1)[11](—1)[22](—1)[5,3](—1)[2] us| = |, , Uy, Uy, us, uy dre even integers.

n



Example: The Column Reduction
Result: G5 - G2 -G -v=e¢;

Input: v € Z[%]8 Output: G, G, G5

12



Example: The Column Reduction

Input: v € Z[%]8 Output: G1,G»,G3 Result: G- G2 -Gy -v=¢;

-1 2

1 0

-1 0

1[-1 G17K71,2,3,4) D) V31D 1o

v Z 3 Vo Z 3
1 1

1 1

1 1

lde(v) =2 lde(v') =2

12



Example: The Column Reduction

Input: v € Z[%]8 Output: G1,G»,G3 Result: G- G2 -Gy -v=¢;

-1 2
1 0
-1 0
1|-1 G17K71,2,3,4) D) D3 Dy 1|0 G2=K[5,6,7,81(-1)[5]
v Z 3 v ol - ‘3 _—
1 1
1 1
1 1
lde(v) =2 lde(v') =2
2 1
0 0
0 0
L, 1]lo| 1]o
V' idlo|T 2] o0
-2 -1
-2 -1
-2 -1

lde(v"”) =1 12



Example: The Column Reduction

Output: G1,G-,G3

EEZEIT nput: v < 2[4

-1 2
1 0
-1 0
1{-1 G1=K[1,2,3,4) (D41 (D3] (-D[1] 1{o0
v Z 3 v Z 3
1 1
1 1
1 1
lde(v) =2 lde(v') =2
2 1
0 0
0 0
o 1o |_1]0|%Kners1 VsV EVer
V' idlo|T 2] o0
-2 -1
-2 -1
2 -1

lde(v”) =1

Result: G5 - G2 -G -v=e¢;

G2=K[5,6,7,8](~1[5]
- 608 7))

=e;.

O O O O O O N

0

1
0
0
0
0
0
0
0
Ide(v") =0

12
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Gate Complexity of the AGR Algorithm

Theorem

Let U € 0, with 1de(U) = k. U can be exactly represented by O(2"k) generators
over G,.

Proof Sketch.

e Each row operation may increase the Ide of any column in U by 1.
e During reduction, the Ide of any other column may increase up to 2k.

fa =0 k), fu, =0((n=1)2k), fo,=0(n=-22%), ..., fo,=0(2""k).

S, = ifu,. = Zn:(n —i+1)27% = 0(2"k).
i=1

i=1



The Householder Algorithm?

With one ancilla, the gate complexity of exactly synthesizing O,, over G, is
reduced from 0(2"k) to O (n’k) .

Definition

Let |¢) be an n-dimensional unit vector. The reflection operator around ) is

Riyy=1-21¢) y|.

® Ryyy =R, and R?, = (I =2|y) () = 2|y} (W) = I.

2vadym Kliuchnikov (2013). “Synthesis of unitaries with Clifford+ T circuits”. In: arXiv preprint
arXiv:1306.3200.
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The Householder Algorithm?

With one ancilla, the gate complexity of exactly synthesizing O,, over G, is
reduced from 0(2"k) to O (n’k) .

Let |¢) be an n-dimensional unit vector. The reflection operator around ) is

Riyy=1-21¢) y|.

® Ryyy =R, and R?, = (I =2|y) () = 2|y} (W) = I.
H H . T pT _ _
® Ry isunitary: Rjy)R| =R/, Ry, =R%, =1.

o If |y) = |v) /2K, R|y) € O

2vadym Kliuchnikov (2013). “Synthesis of unitaries with Clifford+ T circuits”. In: arXiv preprint
arXiv:1306.3200.



Gate Complexity of the Reflection Operator

Proposition

Let |y) = |[v) /2% be an n-dimensional unit vector. |y) is an integer vector and
lde(|y)) = k. The reflection operator R, can be exactly represented by O(nk)
generators over G,,.

Proof Sketch.

G € Gn
ly) — | AGR | ———
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Gate Complexity of the Reflection Operator

Proposition

Let |y) = |v) /2F be an n-dimensional unit vector. |y) is an integer vector and
lde(|y)) = k. The reflection operator R|,, can be exactly represented by O(nk)
generators over G,.

Proof Sketch.

G - . 1
W) —s | AGR | 295 10)=Glu) =i GTjoy = )

G'R0)G =G'(I - 2|0><0|)G—1 2 Wl = Ryy)

Rjyy =G'Rp)G —>| AGR




Gate Complexity of the Reflection Operator

Proposition

Let |¢) = |v) /2¥ be an n-dimensional unit vector. |¢) is an integer vector and
lde(|y)) = k. The reflection operator R|,, can be exactly represented by O(nk)

generators over G,.

Proof Sketch.

W) —| AGR |=—25 10)=Gly) =1 G0y = |y)

Geg,

G™RioyG = GT(1 - 210)(0NG = I - 20) (| = Ryyy =

Ryy =G'Rp)G —>| AGR

.
N
Al



Gate Complexity of the Reflection Operator

Proposition

Let |¢) = |v) /2% be an n-dimensional unit vector. |y) is an integer vector and
lde(Jy)) = k. The reflection operator R|,, can be exactly represented by O(nk)
generators over G,.

Proof Sketch.

G - 1
W) — | AGR | 2595 0y =Gy =G0y = v !

G'Ri0yG = G (I - 20000)G = I - 2| = Ry

.
N
Al
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Rjoy = (=10 CC(Rjpy) = O(1)



Gate Complexity of the Reflection Operator

Proposition

Let |¢) = |v) /2% be an n-dimensional unit vector. |y) is an integer vector and
lde(Jy)) = k. The reflection operator R|,, can be exactly represented by O(nk)
generators over G,.

Proof Sketch.

W) —| AGR |[——Z5% [0)=Gly) =! GT[0) = |y) !

G'Ri0yG =G'(I - 20000V = I — APYW| = Ryyy

.
N
Al

CC(G) = CC(G) = O(nk)

Riyy = G'Ri)G —>| AGR + = O(nk)

Rjoy = (=Dioy CC(Rjpy) = O(1)
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Let U € O,. Then U can be simulated using the unitary U’:
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Unitary Simulation

Let U € O,. Then U can be simulated using the unitary U’:

U=+ {(-|@U+|-)(+ o U".

U/

+)

}Ull//>

® U’ € Oy, and U’ is unitary.

e UV is Hermitian and thus normal.

16



Unitary Factorization

Let |u;) be the j-th column vector in U and |j) be the j-th computational basis
vector. U’ can be factored into n reflections in Oy,

n—-1 .
, o 1) = 1+) luy))
U = | |Rw7 , |w?)=
j=0 i | J> ‘/5
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Unitary Factorization

Let |u;) be the j-th column vector in U and |j) be the j-th computational basis
vector. U’ can be factored into n reflections in Oy,

n—1 .
, o 1) = 1+) luy))
U =| |wa, w7y =
j=0 i | J> ‘/5

. {|w;—f) ; 0 < j <n-1} forms an orthonomal basis.
= 1= ;?;01 (|w;) (w;| + |ij> (w;|) The completeness relation
o |w;f) and |w]_.) are the +1 and -1 eigenstates of U’.

= U = ;‘;01 (|w}f) (Wil = lw}) (w;l) The spectral theorem

n-1 n—1 n-1
1-U =2 |w)) ;| = U =1-2 lw)} (]| =] [ R
j=0 j=0 j=0



Gate Complexity of the Householder Algorithm

Theorem

Let U € O, with 1de(U) = k. Then U can be represented by O(n’k) generators
from G, using the Householder algorithm.

Proof Sketch.
e [ can be simulated by U’ where

n-1
’_ _ _ T _
U=+ (-|®U+|-)(+|8U —HOR|wj>.
J:
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Gate Complexity of the Householder Algorithm

Theorem

Let U € O, with 1de(U) = k. Then U can be represented by O(n’k) generators
from G, using the Householder algorithm.

Proof Sketch.
e [ can be simulated by U’ where

n-1
’_ _ _ T _
U=+ (-|®U+|-)(+|8U —HOR|wj>.
J:

° R|w;> can be exactly represented by O(nk) generators from G,,.

e To represent U, we need n - O(nk) = O(n*k) generators from G,.



The Global Synthesis Algorithm

* The AGR algorithm carries out matrix factorization locally - it synthesizes
one column at a time.
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The Global Synthesis Algorithm

The AGR algorithm carries out matrix factorization locally - it synthesizes
one column at a time.

e When n is fixed, both AGR and householder algorithms have the same
worst-case gate complexity - linear in k.

0(2"k) = 0(k), 0(n’k) = 0(k)

¢ To reduce the gate complexity, we take a global view of each matrix.

¢ Define a global synthesis method for U € £g, then leverage this to find a
global synthesis method for U € Os.
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Orthogonal Scaled Dyadic Matrices

Definition

L, is the group of orthogonal scaled dyadic matrices , which consists of n x n
orthogonal matrices of the form M /2%, where M is an integer matrix and k is a
nonnegative integer.
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Orthogonal Scaled Dyadic Matrices

Definition

L, is the group of orthogonal scaled dyadic matrices , which consists of n x n
orthogonal matrices of the form M /2%, where M is an integer matrix and k is a
nonnegative integer.

Example: V € L,

1 0 -1 0
10 -1 0 -1
V‘_21010
0 1 0 -1
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Orthogonal (Scaled) Dyadic Matrices

e [, isthe group of orthogonal scaled dyadic matrices , which consists of
n x n orthogonal matrices of the form M/\/2¥, where M is an integer matrix
and k is a nonnegative integer.

e O, is the group of orthogonal dyadic matrices, which consists of n x n

orthogonal matrices of the form M /2%, where M is an integer matrix and &
is a nonnegative integer.

Example: V € Ly Example: U € Oy

1 0 -1 0 1 -1 -1 -1
1o -1 0 -1 I S R
=% o 1 o U=3h 1 1 4
0 1 0 -1 1 -1 1 1

21



Orthogonal (Scaled) Dyadic Matrices

e [, isthe group of orthogonal scaled dyadic matrices , which consists of
n x n orthogonal matrices of the form M/V2k, where M is an integer matrix
and k is a nonnegative integer.

e 0, is the group of orthogonal dyadic matrices, which consists of n x n

orthogonal matrices of the form M /2, where M is an integer matrix and k
is a nonnegative integer.

Exemple: V < L,

1 0 -1 0 1 -1 -1 -1
10 -1 0 -1 11 1 -1 1
V‘_21 0 1 0 U‘ﬁ1 1 1 -1
0 1 0 -1 1 -1 1 1
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Orthogonal (Scaled) Dyadic Matrices

e [, isthe group of orthogonal scaled dyadic matrices , which consists of
n x n orthogonal matrices of the form M/V2k, where M is an integer matrix
and k is a nonnegative integer.

e 0, is the group of orthogonal dyadic matrices, which consists of n x n

orthogonal matrices of the form M /2, where M is an integer matrix and k
is a nonnegative integer.

Exemple: V < L,

1 0 -1 0 1 -1 -1 -1
10 -1 0 -1 11 1 -1 1
V‘_21 0 1 0 U‘ﬁ1 1 1 -1
0 1 0 -1 1 -1 1 1

e O0,cL,.



The Circuit-Matrix Correspondence Il

Gn = {(_1)[0]’X[a,ﬁ],K[a/,,B,y,5] l<a<fB<y<d< n}

Fn = {(—1)[0],X[a,ﬁ],K[a’ﬁ’y,g],In/g ®H:1<a<fB<y<d< n} .

22



The Circuit-Matrix Correspondence I

Gn = {(—1)[a],X[a,lg],K[a’/;,y,(g] l<a<fB<y<d< n}
Fn = {(—1)[a],X[a"g],K[a”g’%(;],[@H l<a<fB<y<d< n}

Let U be an n x n matrix. U € £, if and only if

— U can be written as a product of elements of F,.
® The gate complexity is O(2"k).
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The Circuit-Matrix Correspondence I

Gn = {(—1)[a],X[a,lg],K[a’/;,y,(g] l<a<fB<y<d< n}
Fn = {(—1)[a],X[a"g],K[a”g’%(;],[@H l<a<fB<y<d< n}

Let U be an n x n matrix. U € £, if and only if

— U can be written as a product of elements of F,.
® The gate complexity is O(2"k).

— U can be exactly represented by a circuit over {X,CX,CCX, H}.
® The gate complexity is O(2" log(n)k).
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. 1 . . — —
Ue Ls. WriteU = WM with £ minimal. There exists G4, ..., G over Fg, such that

Gy 1 G» 1 Ga Gr
—M o, —k REN M Gs, .. 951
V2 V2 V2

Therefore,

23



Preliminaries

Binary Pattern
LetU e £,. Write U = ?M with k£ minimal. The residue mod 2 of M is called the

binary pattern of U, denoted as U.

Example: U € L5

3 01 -1 1 2 1 1110
Ll o3 -1 =2 t1 110
Us=—|-1 1 3 1 2/ ->T={1 1110
V2 1 -1 1 3 -2 11110
-2 2 -2 2 0 00000

24



Binary Patterns of g

Proposition

Let U € Ls with lde z(U) > 2. Then up to row permutation, column permutation,
and taking the transpose, U is one of the 14 binary patterns.

Proof Sketch. Case distinction using the Weight and Collision Lemmas.

Definition
Let n be even and B € Z}*". B is row-paired if the rows of B can be partitioned
into identical pairs.

Example: Row-paired Example: NOT row-paired

01 01 01 01
— |1 1 11 = |1 1 11
U= 01 01 V= 01 01
1 1 11 01 01

25



Binary patterns that are NICE.

Binary patterns that are NOT NICE.
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Binary patterns that are NOT NICE.
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Number-Theoretic Properties

Weight Lemma

Let U € £, with lde5(U) = k. If k > 1, the number of 1's in any column of Uis
doubly-even.
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Number-Theoretic Properties

Weight Lemma

Let U € £, with lde5(U) = k. If k > 1, the number of 1's in any column of Uis
doubly-even.

Intuition: The 1's in any two distinct columns of U collide evenly many times.

Collision Lemma

Let U € £, with lde 5(U) = k. If k > 0, any two distinct columns of U have evenly
many 1's in common.

Example: Evenly many collisions Example: Oddly many collisions

0
0
y U = 1 us =
1
1

up =

O~ = =
O R = =

S — |

1
1
y Uy = 1
0
1
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Number-Theoretic Properties

Weight Lemma

Let U € £, with lde5(U) = k. If k > 1, the number of 1's in any column of Uis
doubly-even.

Intuition: The 1's in any two distinct columns of U collide evenly many times.

Collision Lemma

Let U € £, with lde 5(U) = k. If k > 0, any two distinct columns of U have evenly
many 1's in common.

Example: Evenly many collisions Example: Oddly many collisions

0 1
0 1
yuz = |1 uz=|(1],us=|1
1 0
1 1

up =

O~ R =
O = =

27



When the Binary Pattern is NICE

Lemma (Row-Paired Reduction)
Let n be even, U € L, with lde 7 (U) = k. If U is row-paired, there exists P € S, such
that lde 5 (((I ® H) P)U) < Ide 5 (U).
Proof Sketch. Since U is row-paired, there exists P € S, such that
ry
1 |2

\/ik

I'n

PU: ’r15r2(2)’"'9rn*1§rn(2)'
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When the Binary Pattern is NICE

Lemma (Row-Paired Reduction)

Let n be even, U € L, with lde 7 (U) = k. If U is row-paired, there exists P € S, such
that lde 5 (((I ® H) P)U) < Ide 5 (U).

Proof Sketch. Since U is row-paired, there exists P € S, such that

ry

H| 0|0
1 |72 1 (1 1
PU:E ,r1£r2(2),...,rn,lzrn(Q).Hzﬁ1 -1 andI®H= 0 . 0
0|0 |H
'n

ri+ro 151 151

. . 1 ri—ra 2 I2 1 2
implies that (1 ® H) PU = —— : =—= | |=—==| |t .. el

Fpn-1—"n In In



Global Synthesis for £y

Lemma (When the Binary Pattern is NOT NICE)

Let U € Ls with lde 5(U) = k. If U is neither row-paired nor column-paired,

(I® H)U (I ® H) is row-paired and lde 5 ((I ® H) U (I ® H)) < 1de (V).
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using the global synthesis algorithm.
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Ue Ly N Globaflosrygthesis
1de(U) = k 8
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Global Synthesis for £y

Lemma (When the Binary Pattern is NOT NICE)

Let U € Ls with lde 5(U) = k. If U is neither row-paired nor column-paired,
(I® H)U (I ® H) is row-paired and lde 5 ((I ® H) U (I ® H)) < 1de (V).

Proposition
Let U € Ls with lde 5(U) = k. U can be represented by O(k) generators in ¥
using the global synthesis algorithm.

Proof Sketch. Let U € Ls, proceed by induction on k.

k<1 lde(CU) <0, length(C) = 0(1)

Ue £y ——y Global Synthesis lde((I® H) PU) <k -1

for £
1de(U) = k 8 T NICE

Uep

29



Global Synthesis for £y

Lemma (When the Binary Pattern is NOT NICE)

Let U € Ls with lde 5(U) = k. If U is neither row-paired nor column-paired,
(I® H)U (I ® H) is row-paired and lde 5 ((I ® H) U (I ® H)) < 1de (V).

Proposition

Let U € Ls with lde 5(U) = k. U can be represented by O(k) generators in ¥
using the global synthesis algorithm.

Proof Sketch. Let U € Ls, proceed by induction on k.
| lde(CU) < 0, length(C) = 0(1)

Ue £y —y Global Synthesis Ide((/ ® H) PU) < k -1

1de(U) = k for £

U NICE

U NOT NICE
lde(I®H)P(I®H)U(I®H)) <k-1



Pushing Hadamard through G (PHG)*

* £, is generated by 7, = {(-D){a], X[a.p]: K[apy.s1: [®H: 1 <a <<y <d<n}.

* 0, is generated by G, = {(-D){a]. X[a,5]: K[a,py,6] 1 1 Sa@a<B<y<d<n}|

3sarah Meng Li, Neil J Ross, and Peter Selinger (2021). “Generators and relations for the group
O, (Z[1/2])". In: arXiv preprint arXiv:2106.01175.
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Pushing Hadamard through G (PHG)*

* £, is generated by 7, = {(-D){a], X[a.p]: K[apy.s1: [®H: 1 <a <<y <d<n}.

* 0, is generated by G, = {(-D){a]. X[a,5]: K[a,py,6] 1 1 Sa@a<B<y<d<n}|

(I®H)(I®H)
(Lo H)(=Dia1 = (=DiarXja,ar1)(=Dia)(/ @ H)
(I® H)(-D[a] = Xja=1,a)(/ @ H)
(1@ H)Xja,a+1) = (=Dian)(/ © H)
(I @ H)Xa,a+1] = Kla-1.a.a+1.a+2)X[a,a+1](] © H)

€
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Pushing Hadamard through G (PHG)*

* £, is generated by 7, = {(-D){a], X[a.p]: K[apy.s1: [®H: 1 <a <<y <d<n}.

* 0, is generated by G, = {(-D){a]. X[a,5]: K[a,py,6] 1 1 Sa@a<B<y<d<n}|

(I®H)(I®H)
(Lo H)(=Dia1 = (=DiarXja,ar1)(=Dia)(/ @ H)
(I® H)(-D[a] = Xja=1,a)(/ @ H)
(1@ H)Xja,a+1) = (=Dian)(/ © H)
(I @ H)Xa,a+1] = Kla-1.a.a+1.a+2)X[a,a+1](] © H)

€

Intuition: Pushing I ® H through an element in G, adds O(1) gates.

3sarah Meng Li, Neil J Ross, and Peter Selinger (2021). “Generators and relations for the group
O, (Z[1/2])". In: arXiv preprint arXiv:2106.01175.
30



Global Synthesis for Oy

Let U € Og with 1de(U) = k. U can be represented by O(k) generators in Gs using
the global synthesis algorithm.
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Global Synthesis for Oy

Theorem

Let U € Og with 1de(U) = k. U can be represented by O(k) generators in Gs using
the global synthesis algorithm.

Proof Sketch. Since U € L3 with lde ;(U) = 2k, globally synthesizing U over %
yields evenly many I ® H.
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Global Synthesis for Oy

Theorem

Let U € Og with 1de(U) = k. U can be represented by O(k) generators in Gs using
the global synthesis algorithm.

Proof Sketch. Since U € L3 with lde ;(U) = 2k, globally synthesizing U over %
yields evenly many I ® H.

UeOy — Global Synthesis

—_—> U=C1(I® H)Co(l ® H)C3(] @ H)C4(I ® H)Cs
for Lg

C1,C2,C3,C4,C5 Over Gy

length(U) = O (k)

31



Global Synthesis for Oy

Theorem
Let U € Og with 1de(U) = k. U can be represented by O(k) generators in Gs using
the global synthesis algorithm.

Proof Sketch. Since U € Lg with lde ;(U) = 2k, globally synthesizing U over %3
yields evenly many I ® H.

—_— G'Ob?c')rsi/:”thegs L3 U=Cy(1®H)Cy(I® H)Cs(I ® H)Cyll ® H)Cs
8
l PHG

U=CCy(I®H)(I®H)CC(I®H)(I®H)Cs

Ci1,Cs, C3, Cy, Cs OVEr Gg

length(U) = O (k)

C;,C; over Gg

length(C}) / length(C4) = O(1)

,,,,,,,,,,,,,,,,,,,,,,,,

length(C}) / length(C2) = O(1) |
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Global Synthesis for Oy

Theorem
Let U € Og with 1de(U) = k. U can be represented by O(k) generators in Gs using
the global synthesis algorithm.

Proof Sketch. Since U € Lg with lde ;(U) = 2k, globally synthesizing U over %3
yields evenly many I ® H.

— G'Ob;f_‘c')fi/:”thegs L U=Ci(1®H)Co(I ® H)Cs(I ® H)Ca(I ® H)Cs
8

PHG

v

U=CCy(I®H)(I®H)CC(I®H)(I®H)Cs

Ci1,Cs, C3, Cy, Cs OVEr Gg

length(U) = O (k)

Cj;,C; over Gg (I®H)(I®H) =1

length(C}) / length(C2) = O(1) | v
length(C}) / length(C4) = O(1) ! U= ClcéCBCZCs

,,,,,,,,,,,,,,,,,,,,,,,,
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e Explore the complexity-theoretic properties of Toffoli-Hadamard circuits
through the lens of MQCSP*.

“Nai-Hui Chia et al. (2021). “Quantum meets the minimum circuit size problem”. In: arXiv
preprint arXiv:2108.03171.
32
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Explore the complexity-theoretic properties of Toffoli-Hadamard circuits
through the lens of MQCSP*.

¢ Manifest the advantage of our global synthesis algorithm by scaling it up.

Present the global synthesis results of 0,, and £, using {X,CX,CCX,K} and
{X,CX,CCX, H} directly.

¢ Design a standalone global synthesis for Og, rather than relying on the
corresponding result for £3 and the commutation of generators.

“Nai-Hui Chia et al. (2021). “Quantum meets the minimum circuit size problem”. In: arXiv
preprint arXiv:2108.03171.
32






