Improved Synthesis of Toffoli-Hadamard Circuits

Matthew Amy¹, Andrew N. Glaudell², Sarah Meng Li^{3,4}, Neil J. Ross⁵

- School of Computing Science, Simon Fraser University
 Photonic Inc.
 Institute for Quantum Computing, University of Waterloo
- [4] Department of Combinatorics and Optimization, University of Waterloo
- [5] Department of Mathematics and Statistics, Dalhousie University

Restricted Clifford+T Circuits¹

¹Amy, M., Glaudell, A. N., & Ross, N. J. (2020). Number-theoretic characterizations of some restricted Clifford+T circuits. Quantum, 4, 252.

Basic Gates

(-1) = [-1]

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad CX = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} I_2 & \mathbf{0} \\ \mathbf{0} & X \end{bmatrix}, \quad CCX = \begin{bmatrix} I_6 & \mathbf{0} \\ \mathbf{0} & X \end{bmatrix}$$

• A family of quantum circuits \Longleftrightarrow A group of matrices.

- A family of quantum circuits \Longleftrightarrow A group of matrices.
- Studying matrix groups is a way to study quantum circuits.

- A family of quantum circuits ⇐⇒ A group of matrices.
- Studying matrix groups is a way to study quantum circuits.
- For the matrix group associated with the Toffoli-Hadamard circuits, use a convenient set of generators and study the factorization of group elements into a sequence of these generators.

- A family of quantum circuits ⇐⇒ A group of matrices.
- Studying matrix groups is a way to study quantum circuits.
- For the matrix group associated with the Toffoli-Hadamard circuits, use a convenient set of generators and study the factorization of group elements into a sequence of these generators.
 - \Rightarrow The exact synthesis algorithm

- A family of quantum circuits ⇐⇒ A group of matrices.
- Studying matrix groups is a way to study quantum circuits.
- For the matrix group associated with the Toffoli-Hadamard circuits, use a convenient set of generators and study the factorization of group elements into a sequence of these generators.
 - \Rightarrow The exact synthesis algorithm
- A factorization is optimal if the sequence is a shortest possible sequence.

- A family of quantum circuits ⇐⇒ A group of matrices.
- Studying matrix groups is a way to study quantum circuits.
- For the matrix group associated with the Toffoli-Hadamard circuits, use a convenient set of generators and study the factorization of group elements into a sequence of these generators.
 - \Rightarrow The exact synthesis algorithm
- A factorization is optimal if the sequence is a shortest possible sequence.
- Each generator can be expressed as a short circuit.

- A family of quantum circuits ⇐⇒ A group of matrices.
- Studying matrix groups is a way to study quantum circuits.
- For the matrix group associated with the Toffoli-Hadamard circuits, use a convenient set of generators and study the factorization of group elements into a sequence of these generators.
 - \Rightarrow The exact synthesis algorithm
- A factorization is optimal if the sequence is a shortest possible sequence.
- Each generator can be expressed as a short circuit.
 - \Rightarrow A good solution to this factorization problem yields a good synthesis.

The Local Synthesis Algorithm • The gate complexity of the exactly synthesized circuit: $O(2^n \log(n)k)$

[0] Amy, M., Glaudell, A. N., & Ross, N. J. (2020). Number-theoretic characterizations of some restricted Clifford+ T circuits. Quantum, 4, 252.

[1] Kliuchnikov, V. (2013). Synthesis of unitaries with Clifford+ T circuits. arXiv preprint arXiv:1306.3200.

Kliuchnikov, V. (2013). Synthesis of unitaries with Clifford+ T circuits. arXiv preprint arXiv:1306.3200.
 Russell, T. (2014). The exact synthesis of 1-and 2-qubit Clifford+ T circuits. arXiv preprint arXiv:1408.6202.
 Niemann, P., Wille, R., & Drechsler, R. (2020). Advanced exact synthesis of Clifford+ T circuits. Quantum Information Processing, 19, 1-23.

Orthogonal Dyadic Matrices

• $\mathbb{Z}\left[\frac{1}{2}\right] = \left\{\frac{u}{2^q} | u \in \mathbb{Z}, q \in \mathbb{N}\right\}$ is the ring of *dyadic fractions*.

Orthogonal Dyadic Matrices

- $\mathbb{Z}\left[\frac{1}{2}\right] = \left\{\frac{u}{2^q} | u \in \mathbb{Z}, q \in \mathbb{N}\right\}$ is the ring of *dyadic fractions*.
- $O_n(\mathbb{Z}\begin{bmatrix}\frac{1}{2}\end{bmatrix})$ is the group of *orthogonal dyadic matrices*, which consists of $n \times n$ orthogonal matrices of the form $M/2^k$, where M is an integer matrix and k is a nonnegative integer. For short, we denote it as O_n .

- $\mathbb{Z}\left[\frac{1}{2}\right] = \left\{\frac{u}{2^q} | u \in \mathbb{Z}, q \in \mathbb{N}\right\}$ is the ring of *dyadic fractions*.
- $O_n(\mathbb{Z}\begin{bmatrix}\frac{1}{2}\end{bmatrix})$ is the group of *orthogonal dyadic matrices*, which consists of $n \times n$ orthogonal matrices of the form $M/2^k$, where M is an integer matrix and k is a nonnegative integer. For short, we denote it as O_n .

$$U = \begin{bmatrix} 3/4 & 1/4 & -1/4 & 1/4 & 1/2 \\ 1/4 & 3/4 & 1/4 & -1/4 & -1/2 \\ -1/4 & 1/4 & 3/4 & 1/4 & 1/2 \\ 1/4 & -1/4 & 1/4 & 3/4 & -1/2 \\ -1/2 & 1/2 & -1/2 & 1/2 & 0 \end{bmatrix}$$

- $\mathbb{Z}\left[\frac{1}{2}\right] = \left\{\frac{u}{2^q} | u \in \mathbb{Z}, q \in \mathbb{N}\right\}$ is the ring of *dyadic fractions*.
- $O_n(\mathbb{Z}\begin{bmatrix}\frac{1}{2}\end{bmatrix})$ is the group of *orthogonal dyadic matrices*, which consists of $n \times n$ orthogonal matrices of the form $M/2^k$, where M is an integer matrix and k is a nonnegative integer. For short, we denote it as O_n .

Example: $U \in O_5$

$$U = \begin{bmatrix} 3/4 & 1/4 & -1/4 & 1/4 & 1/2 \\ 1/4 & 3/4 & 1/4 & -1/4 & -1/2 \\ -1/4 & 1/4 & 3/4 & 1/4 & 1/2 \\ 1/4 & -1/4 & 1/4 & 3/4 & -1/2 \\ -1/2 & 1/2 & -1/2 & 1/2 & 0 \end{bmatrix}$$

- $\mathbb{Z}\left[\frac{1}{2}\right] = \left\{\frac{u}{2^{q}} | u \in \mathbb{Z}, q \in \mathbb{N}\right\}$ is the ring of *dyadic fractions*.
- $O_n(\mathbb{Z}\begin{bmatrix}\frac{1}{2}\end{bmatrix})$ is the group of **orthogonal dyadic matrices**, which consists of $n \times n$ orthogonal matrices of the form $M/2^k$, where M is an integer matrix and k is a nonnegative integer. For short, we denote it as O_n .

Example: $U \in O_5$

$$U = \frac{1}{2^2} \begin{bmatrix} 3 & 1 & -1 & 1 & 2\\ 1 & 3 & 1 & -1 & -2\\ -1 & 1 & 3 & 1 & 2\\ 1 & -1 & 1 & 3 & -2\\ -2 & 2 & -2 & 2 & 0 \end{bmatrix}$$

Theorem (The AGR Algorithm¹)

For an n-dimensional orthogonal matrix U, it can be exactly represented by a circuit over $\{X, CX, CCX, K\}$ iff $U \in O_n$.

¹Amy, M., Glaudell, A. N., & Ross, N. J. (2020). Number-theoretic characterizations of some restricted Clifford+T circuits. Quantum, 4, 252.

Theorem (The AGR Algorithm¹)

For an n-dimensional orthogonal matrix U, it can be exactly represented by a circuit over $\{X, CX, CCX, K\}$ iff $U \in O_n$.

$$\mathcal{G}_n = \left\{ (-1)_{[\alpha]}, X_{[\alpha,\beta]}, K_{[\alpha,\beta,\gamma,\delta]} : 1 \le \alpha < \beta < \gamma < \delta \le n \right\}.$$

¹Amy, M., Glaudell, A. N., & Ross, N. J. (2020). Number-theoretic characterizations of some restricted Clifford+T circuits. Quantum, 4, 252.

Theorem (The AGR Algorithm¹)

For an n-dimensional orthogonal matrix U, it can be exactly represented by a circuit over $\{X, CX, CCX, K\}$ iff $U \in O_n$.

$$\mathcal{G}_n = \left\{ (-1)_{[\alpha]}, X_{[\alpha,\beta]}, K_{[\alpha,\beta,\gamma,\delta]} : 1 \le \alpha < \beta < \gamma < \delta \le n \right\}.$$

• When $n = 2^m$, every operator in \mathcal{G}_n can be exactly represented by $O(\log(n))$ operators in $\{X, CX, CCX, K\}$.

¹Amy, M., Glaudell, A. N., & Ross, N. J. (2020). Number-theoretic characterizations of some restricted Clifford+T circuits. Quantum, 4, 252.

Theorem (The AGR Algorithm¹)

For an n-dimensional orthogonal matrix U, it can be exactly represented by a circuit over $\{X, CX, CCX, K\}$ iff $U \in O_n$.

$$\mathcal{G}_n = \left\{ (-1)_{[\alpha]}, X_{[\alpha,\beta]}, K_{[\alpha,\beta,\gamma,\delta]} : 1 \le \alpha < \beta < \gamma < \delta \le n \right\}.$$

• When $n = 2^m$, every operator in \mathcal{G}_n can be exactly represented by $O(\log(n))$ operators in $\{X, CX, CCX, K\}$.

Theorem (The AGR Algorithm)

For an n-dimensional orthogonal matrix U, it can be written as a product of elements of \mathcal{G}_n iff $U \in \mathcal{O}_n$.

¹Amy, M., Glaudell, A. N., & Ross, N. J. (2020). Number-theoretic characterizations of some restricted Clifford+T circuits. Quantum, 4, 252.

The Two-Level Operator: $U_{[\alpha,\beta]}$

Definition Let $U = \begin{bmatrix} x_{1,1} & x_{1,2} \\ x_{2,1} & x_{2,2} \end{bmatrix}$. The action of $U_{[\alpha,\beta]}$, $1 \le \alpha < \beta \le n$, is defined as $U_{[\alpha,\beta]}v = w$, where $\begin{cases} \begin{bmatrix} w_{\alpha} \\ w_{\beta} \end{bmatrix} = U \begin{bmatrix} v_{\alpha} \\ v_{\beta} \end{bmatrix}$, $w_i = v_i, i \notin \{\alpha, \beta\}$.

Example:

Let
$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
. Then $X_{[2,3]} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ and $X_{[2,3]} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_3 \\ v_4 \\ v_4 \end{bmatrix}$.

The Four-Level Operator: $U_{[\alpha,\beta,\gamma,\delta]}$

Similarly, we can create a four-level operator by embedding a 4×4 matrix U into an $n \times n$ identity matrix.

$$K_{[1,2,4,6]} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \\ v_6 \end{bmatrix} = \begin{bmatrix} (v_1 + v_2 + v_4 + v_6)/2 \\ (v_1 - v_2 + v_4 - v_6)/2 \\ v_3 \\ (v_1 + v_2 - v_4 - v_6)/2 \\ v_5 \\ (v_1 - v_2 - v_4 + v_6)/2 \end{bmatrix}.$$

The AGR Algorithm

- The algorithm proceeds one column at a time, reducing each column to a corresponding basis vector.
- While outputting a word $\overrightarrow{G_{\ell}}$ after each iteration, the algorithm recursively acts on the input matrix until it is reduced to the identity matrix I.

$$M \xrightarrow{\overrightarrow{G_1}} \begin{pmatrix} & & 0 \\ & & \vdots \\ & & 0 \\ \hline 0 & \cdots & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{G_2}} \begin{pmatrix} & & 0 & 0 \\ & M'' & \vdots & \vdots \\ & & 0 & 0 \\ \hline 0 & \cdots & 0 & 1 & 0 \\ 0 & \cdots & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{G_d}} \mathbb{I}$$

$$\overrightarrow{G_{\ell}} \cdots \overrightarrow{G_{1}}M = \mathbb{I} \Rightarrow M = \overrightarrow{G_{1}}^{-1} \cdots \overrightarrow{G_{\ell}}^{-1}$$

The AGR Algorithm

- The algorithm proceeds one column at a time, reducing each column to a corresponding basis vector.
- While outputting a word $\overrightarrow{G_{\ell}}$ after each iteration, the algorithm recursively acts on the input matrix until it is reduced to the identity matrix I.

$$M \xrightarrow{\overrightarrow{G_1}} \begin{pmatrix} & & 0 \\ & M' & \vdots \\ & & 0 \\ \hline 0 & \cdots & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{G_2}} \begin{pmatrix} & & 0 & 0 \\ & M'' & \vdots & \vdots \\ & & 0 & 0 \\ \hline 0 & \cdots & 0 & 1 & 0 \\ 0 & \cdots & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{G_3}} \cdots \xrightarrow{\overrightarrow{G_\ell}} \mathbb{I}$$

$$e_{\mathbf{n}}$$

$$\overrightarrow{G_{\ell}} \cdots \overrightarrow{G_{1}}M = \mathbb{I} \Rightarrow M = \overrightarrow{G_{1}}^{-1} \cdots \overrightarrow{G_{\ell}}^{-1}$$

The AGR Algorithm

- The algorithm proceeds one column at a time, reducing each column to a corresponding basis vector.
- While outputting a word $\overrightarrow{G_{\ell}}$ after each iteration, the algorithm recursively acts on the input matrix until it is reduced to the identity matrix I.

Let $t \in \mathbb{Z}\begin{bmatrix} \frac{1}{2} \end{bmatrix}$. $t = \frac{a}{2^k}$, where $a \in \mathbb{Z}$ and $k \in \mathbb{N}$. k is a denominator exponent for t. The minimal such k is called the *least denominator exponent* of t, written lde(t).

$$v = \frac{1}{2^{7}} \begin{bmatrix} 54\\62\\98\\2\\2\\2\\2\\2\\2\\2\\2\\2 \end{bmatrix} = \frac{2}{2^{7}} \begin{bmatrix} 27\\31\\49\\1\\1\\1\\1\\1\\1 \end{bmatrix} = \frac{1}{2^{6}} \begin{bmatrix} 27\\31\\49\\1\\1\\1\\1\\1\\1\\1 \end{bmatrix}$$

Let $t \in \mathbb{Z}\left[\frac{1}{2}\right]$. $t = \frac{a}{2^k}$, where $a \in \mathbb{Z}$ and $k \in \mathbb{N}$. k is a denominator exponent for t. The minimal such k is called the *least denominator exponent* of t, written lde(t).

$$v = \frac{1}{2^{7}} \begin{bmatrix} 54\\62\\98\\2\\2\\2\\2\\2\\2\\2\\2 \end{bmatrix} = \frac{2}{2^{7}} \begin{bmatrix} 27\\31\\49\\1\\1\\1\\1\\1\\1 \end{bmatrix} = \frac{1}{2^{6}} \begin{bmatrix} 27\\31\\49\\1\\1\\1\\1\\1\\1 \end{bmatrix}$$

Let $t \in \mathbb{Z}\begin{bmatrix} \frac{1}{2} \end{bmatrix}$. $t = \frac{a}{2^k}$, where $a \in \mathbb{Z}$ and $k \in \mathbb{N}$. k is a denominator exponent for t. The minimal such k is called the *least denominator exponent* of t, written lde(t).

$$v = \frac{1}{2^{7}} \begin{bmatrix} 54\\62\\98\\2\\2\\2\\2\\2\\2\\2\\2\\2 \end{bmatrix} = \frac{2}{2^{7}} \begin{bmatrix} 27\\31\\49\\1\\1\\1\\1\\1\\1 \end{bmatrix} = \frac{1}{2^{6}} \begin{bmatrix} 27\\31\\49\\1\\1\\1\\1\\1\\1\\1 \end{bmatrix}$$

Let $t \in \mathbb{Z}\begin{bmatrix}\frac{1}{2}\end{bmatrix}$. $t = \frac{a}{2^k}$, where $a \in \mathbb{Z}$ and $k \in \mathbb{N}$. k is a denominator exponent for t. The minimal such k is called the *least denominator exponent* of t, written lde(t).

Lemma (Base Case)

Let $v \in \mathbb{Z}\left[\frac{1}{2}\right]^n$ be a unit vector with lde(v) = k. If k = 0, $v = \pm e_j$ for some $j \in \{1, ..., n\}$.

Lemma (Base Case)

Let $v \in \mathbb{Z}\left[\frac{1}{2}\right]^n$ be a unit vector with lde(v) = k. If k = 0, $v = \pm e_j$ for some $j \in \{1, ..., n\}$.

Lemma (Weight)

Let $v \in \mathbb{Z}\left[\frac{1}{2}\right]^n$ be a unit vector with lde(v) = k. Let $w = 2^k v$. If k > 0, the number of odd entries in w is a multiple of 4.

Lemma (Base Case)

Let $v \in \mathbb{Z}\left[\frac{1}{2}\right]^n$ be a unit vector with lde(v) = k. If k = 0, $v = \pm e_j$ for some $j \in \{1, ..., n\}$.

Lemma (Weight)

Let $v \in \mathbb{Z}\left[\frac{1}{2}\right]^n$ be a unit vector with lde(v) = k. Let $w = 2^k v$. If k > 0, the number of odd entries in w is a multiple of 4.

Lemma (Parity Reduction)

Let u_1, u_2, u_3, u_4 be odd integers. Then there exist $\tau_1, \tau_2, \tau_3, \tau_4 \in \mathbb{Z}_2$ such that

$$K_{[1,2,3,4]}(-1)_{[1]}^{\tau_1}(-1)_{[2]}^{\tau_2}(-1)_{[3]}^{\tau_3}(-1)_{[4]}^{\tau_4}\begin{bmatrix}u_1\\u_2\\u_3\\u_4\end{bmatrix} = \begin{bmatrix}u_1'\\u_2'\\u_3'\\u_4'\end{bmatrix}, u_1', u_2', u_3', u_4' \text{ are even integers.}$$

Example: The Column Reduction

Example: The Column Reduction

Example: The Column Reduction

Example: The Column Reduction

Theorem

Let $U \in O_n$ with lde(U) = k. U can be exactly represented by $O(2^n k)$ generators over \mathcal{G}_n .

Theorem

Let $U \in O_n$ with lde(U) = k. U can be exactly represented by $O(2^n k)$ generators over \mathcal{G}_n .

Proof Sketch.

• Each row operation may increase the lde of any column in U by 1.

Theorem

Let $U \in O_n$ with lde(U) = k. U can be exactly represented by $O(2^n k)$ generators over \mathcal{G}_n .

- Each row operation may increase the lde of any column in U by 1.
- During reduction, the lde of any other column may increase up to 2k.

Theorem

Let $U \in O_n$ with lde(U) = k. U can be exactly represented by $O(2^n k)$ generators over \mathcal{G}_n .

- Each row operation may increase the lde of any column in U by 1.
- During reduction, the lde of any other column may increase up to 2k.

$$f_{\mathbf{u}_1} = O(nk), \quad f_{\mathbf{u}_2} = O((n-1)2k), \quad f_{\mathbf{u}_3} = O((n-2)2^2k), \quad \dots, \quad f_{\mathbf{u}_n} = O(2^{n-1}k).$$

Theorem

Let $U \in O_n$ with lde(U) = k. U can be exactly represented by $O(2^n k)$ generators over \mathcal{G}_n .

Proof Sketch.

- Each row operation may increase the lde of any column in U by 1.
- During reduction, the lde of any other column may increase up to 2k.

$$f_{\mathbf{u}_1} = O(nk), \quad f_{\mathbf{u}_2} = O((n-1)2k), \quad f_{\mathbf{u}_3} = O((n-2)2^2k), \quad \dots, \quad f_{\mathbf{u}_n} = O(2^{n-1}k).$$

$$S_n = \sum_{i=1}^n f_{\mathbf{u}_i} = \sum_{i=1}^n (n-i+1)2^{i-1}k = O(2^nk).$$

The Householder Algorithm²

With **one ancilla**, the gate complexity of exactly synthesizing O_n over G_n is reduced from $O(2^n k)$ to $O(n^2 k)$.

Definition

Let $|\psi\rangle$ be an *n*-dimensional unit vector. The reflection operator around $|\psi\rangle$ is

 $R_{|\psi\rangle} = I - 2 |\psi\rangle \langle \psi|.$

•
$$R_{|\psi\rangle} = R^{\dagger}_{|\psi\rangle}$$
 and $R^{2}_{|\psi\rangle} = (I - 2 |\psi\rangle \langle \psi|) (I - 2 |\psi\rangle \langle \psi|) = I.$

²Vadym Kliuchnikov (2013). "Synthesis of unitaries with Clifford+ T circuits". In: *arXiv* preprint arXiv:1306.3200.

The Householder Algorithm²

With **one ancilla**, the gate complexity of exactly synthesizing O_n over G_n is reduced from $O(2^n k)$ to $O(n^2 k)$.

Definition

Let $|\psi\rangle$ be an *n*-dimensional unit vector. The reflection operator around $|\psi\rangle$ is

 $R_{|\psi\rangle} = I - 2 |\psi\rangle \langle \psi|.$

•
$$R_{|\psi\rangle} = R^{\dagger}_{|\psi\rangle}$$
 and $R^{2}_{|\psi\rangle} = (I - 2 |\psi\rangle \langle \psi|)(I - 2 |\psi\rangle \langle \psi|) = I.$

•
$$R_{|\psi\rangle}$$
 is unitary: $R_{|\psi\rangle}R_{|\psi\rangle}^{\dagger} = R_{|\psi\rangle}^{\dagger}R_{|\psi\rangle} = R_{|\psi\rangle}^{2} = I.$

²Vadym Kliuchnikov (2013). "Synthesis of unitaries with Clifford+ T circuits". In: *arXiv* preprint arXiv:1306.3200.

The Householder Algorithm²

With one ancilla, the gate complexity of exactly synthesizing O_n over G_n is reduced from $O(2^n k)$ to $O(n^2 k)$.

Definition

Let $|\psi\rangle$ be an *n*-dimensional unit vector. The reflection operator around $|\psi\rangle$ is

 $R_{|\psi\rangle} = I - 2 |\psi\rangle \langle \psi|.$

•
$$R_{|\psi\rangle} = R^{\dagger}_{|\psi\rangle}$$
 and $R^{2}_{|\psi\rangle} = (I - 2 |\psi\rangle \langle \psi|)(I - 2 |\psi\rangle \langle \psi|) = I.$

•
$$R_{|\psi\rangle}$$
 is unitary: $R_{|\psi\rangle}R_{|\psi\rangle}^{\dagger} = R_{|\psi\rangle}^{\dagger}R_{|\psi\rangle} = R_{|\psi\rangle}^{2} = I.$

• If $|\psi\rangle = |v\rangle/2^k$, $R_{|\psi\rangle} \in O_n$.

²Vadym Kliuchnikov (2013). "Synthesis of unitaries with Clifford+ T circuits". In: *arXiv preprint arXiv:1306.3200*.

Proposition

Let $|\psi\rangle = |v\rangle/2^k$ be an *n*-dimensional unit vector. $|\psi\rangle$ is an integer vector and $lde(|\psi\rangle) = k$. The reflection operator $R_{|\psi\rangle}$ can be exactly represented by O(nk) generators over \mathcal{G}_n .

$$|\psi\rangle \longrightarrow \mathsf{AGR} \xrightarrow{G \in \mathcal{G}_n} \mathsf{AGR}$$

Proposition

Let $|\psi\rangle = |v\rangle/2^k$ be an *n*-dimensional unit vector. $|\psi\rangle$ is an integer vector and $lde(|\psi\rangle) = k$. The reflection operator $R_{|\psi\rangle}$ can be exactly represented by O(nk) generators over \mathcal{G}_n .

$$|\psi\rangle \longrightarrow \text{AGR} \xrightarrow{G \in \mathcal{G}_n} |0\rangle = G|\psi\rangle \equiv G^{\dagger}|0\rangle = |\psi\rangle$$

Proposition

Let $|\psi\rangle = |v\rangle/2^k$ be an *n*-dimensional unit vector. $|\psi\rangle$ is an integer vector and $lde(|\psi\rangle) = k$. The reflection operator $R_{|\psi\rangle}$ can be exactly represented by O(nk) generators over \mathcal{G}_n .

$$|\psi\rangle \longrightarrow \boxed{\mathsf{AGR}} \xrightarrow{G \in \mathcal{G}_n} |0\rangle = G|\psi\rangle \equiv \boxed{G^{\dagger}|0\rangle = |\psi\rangle}$$
$$G^{\dagger}R_{|0\rangle}G = G^{\dagger}(I - 2|0\rangle\langle 0|)G = I - 2|\psi\rangle\langle \psi| =: R_{|\psi\rangle}$$

Proposition

Let $|\psi\rangle = |v\rangle/2^k$ be an *n*-dimensional unit vector. $|\psi\rangle$ is an integer vector and $lde(|\psi\rangle) = k$. The reflection operator $R_{|\psi\rangle}$ can be exactly represented by O(nk) generators over \mathcal{G}_n .

$$|\psi\rangle \longrightarrow \boxed{\mathsf{AGR}} \xrightarrow{G \in \mathcal{G}_n} |0\rangle = G|\psi\rangle \equiv \boxed{G^{\dagger}|0\rangle = |\psi\rangle}$$
$$G^{\dagger}R_{|0\rangle}G = G^{\dagger}(I - 2|0\rangle\langle 0|)G = I - 2|\psi\rangle\langle \psi| =: R_{|\psi\rangle}$$

$$R_{|\psi\rangle} = G^{\dagger} R_{|0\rangle} G \longrightarrow$$
 AGR

Proposition

Let $|\psi\rangle = |v\rangle/2^k$ be an *n*-dimensional unit vector. $|\psi\rangle$ is an integer vector and $lde(|\psi\rangle) = k$. The reflection operator $R_{|\psi\rangle}$ can be exactly represented by O(nk) generators over \mathcal{G}_n .

Proof Sketch.

 $R_{\rm I}$

$$|\psi\rangle \longrightarrow \boxed{\mathsf{AGR}} \xrightarrow{G \in \mathcal{G}_n} |0\rangle = G|\psi\rangle \equiv \boxed{G^{\dagger}|0\rangle = |\psi\rangle}$$
$$G^{\dagger}R_{|0\rangle}G = G^{\dagger}(I - 2|0\rangle\langle 0|)G = I - 2|\psi\rangle\langle \psi| =: R_{|\psi\rangle}$$
$$\psi\rangle = G^{\dagger}R_{|0\rangle}G \longrightarrow \boxed{\mathsf{AGR}}$$

Proposition

Let $|\psi\rangle = |v\rangle/2^k$ be an *n*-dimensional unit vector. $|\psi\rangle$ is an integer vector and $lde(|\psi\rangle) = k$. The reflection operator $R_{|\psi\rangle}$ can be exactly represented by O(nk) generators over \mathcal{G}_n .

$$|\psi\rangle \longrightarrow \boxed{\mathsf{AGR}} \xrightarrow{G \in \mathcal{G}_n} |0\rangle = G|\psi\rangle \equiv \boxed{G^{\dagger}|0\rangle = |\psi\rangle}$$

$$G^{\dagger}R_{|0\rangle}G = G^{\dagger}(I - 2|0\rangle\langle 0|)G = I - 2|\psi\rangle\langle \psi| =: R_{|\psi\rangle}$$

$$R_{|\psi\rangle} = G^{\dagger}R_{|0\rangle}G \longrightarrow \boxed{\mathsf{AGR}} \xrightarrow{\mathcal{CC}(G^{\dagger}) = CC(G) = O(nk)}$$

$$R_{|\psi\rangle} = G^{\dagger}R_{|0\rangle}G \longrightarrow \boxed{\mathsf{AGR}} \xrightarrow{\mathcal{CC}(R_{|0\rangle}) = O(1)}$$

Proposition

Let $|\psi\rangle = |v\rangle/2^k$ be an *n*-dimensional unit vector. $|\psi\rangle$ is an integer vector and $lde(|\psi\rangle) = k$. The reflection operator $R_{|\psi\rangle}$ can be exactly represented by O(nk) generators over \mathcal{G}_n .

Unitary Simulation

Let $U \in O_n$. Then U can be simulated using the unitary U':

 $U' = \left| + \right\rangle \left\langle - \right| \otimes U + \left| - \right\rangle \left\langle + \right| \otimes U^{\dagger}.$

Unitary Simulation

Let $U \in O_n$. Then U can be simulated using the unitary U':

 $U' = \left| + \right\rangle \left\langle - \right| \otimes U + \left| - \right\rangle \left\langle + \right| \otimes U^{\dagger}.$

• $U' \in O_{2n}$ and U' is unitary.

Unitary Simulation

Let $U \in O_n$. Then U can be simulated using the unitary U':

 $U' = \left| + \right\rangle \left\langle - \right| \otimes U + \left| - \right\rangle \left\langle + \right| \otimes U^{\dagger}.$

- $U' \in O_{2n}$ and U' is unitary.
- U' is Hermitian and thus normal.

Let $|u_j\rangle$ be the *j*-th column vector in *U* and $|j\rangle$ be the *j*-th computational basis vector. *U'* can be factored into *n* reflections in O_{2n} .

$$U' = \prod_{j=0}^{n-1} R_{|\omega_j^-\rangle}, \quad |\omega_j^-\rangle = \frac{\left(|-\rangle |j\rangle - |+\rangle |u_j\rangle\right)}{\sqrt{2}}$$

Let $|u_j\rangle$ be the *j*-th column vector in *U* and $|j\rangle$ be the *j*-th computational basis vector. *U'* can be factored into *n* reflections in O_{2n} .

$$U' = \prod_{j=0}^{n-1} R_{|\omega_j^-\rangle}, \quad |\omega_j^-\rangle = \frac{\left(|-\rangle |j\rangle - |+\rangle |u_j\rangle\right)}{\sqrt{2}}$$

• $\{|\omega_j^{\pm}\rangle; \ 0 \le j \le n-1\}$ forms an orthonomal basis.

Let $|u_j\rangle$ be the *j*-th column vector in *U* and $|j\rangle$ be the *j*-th computational basis vector. *U'* can be factored into *n* reflections in O_{2n} .

$$U' = \prod_{j=0}^{n-1} R_{|\omega_j^-\rangle}, \quad |\omega_j^-\rangle = \frac{\left(|-\rangle |j\rangle - |+\rangle |u_j\rangle\right)}{\sqrt{2}}$$

• $\{|\omega_j^{\pm}\rangle; \ 0 \le j \le n-1\}$ forms an orthonomal basis.

$$\Rightarrow I = \sum_{j=0}^{n-1} \left(\ket{\omega_j^+} \bra{\omega_j^+} + \ket{\omega_j^-} \bra{\omega_j^-} \right) \text{The completeness relation}$$

Let $|u_j\rangle$ be the *j*-th column vector in *U* and $|j\rangle$ be the *j*-th computational basis vector. *U'* can be factored into *n* reflections in O_{2n} .

$$U' = \prod_{j=0}^{n-1} R_{|\omega_j^-\rangle}, \quad |\omega_j^-\rangle = \frac{\left(|-\rangle |j\rangle - |+\rangle |u_j\rangle\right)}{\sqrt{2}}$$

• $\left\{ |\omega_j^{\pm}\rangle ; \ 0 \le j \le n-1 \right\}$ forms an orthonomal basis.

- $\Rightarrow I = \sum_{j=0}^{n-1} \left(|\omega_j^+\rangle \langle \omega_j^+| + |\omega_j^-\rangle \langle \omega_j^-| \right) \text{ The completeness relation}$
 - $|\omega_{i}^{+}\rangle$ and $|\omega_{i}^{-}\rangle$ are the +1 and -1 eigenstates of U'.

Let $|u_j\rangle$ be the *j*-th column vector in *U* and $|j\rangle$ be the *j*-th computational basis vector. *U'* can be factored into *n* reflections in O_{2n} .

$$U' = \prod_{j=0}^{n-1} R_{|\omega_j^-\rangle}, \quad |\omega_j^-\rangle = \frac{\left(|-\rangle |j\rangle - |+\rangle |u_j\rangle\right)}{\sqrt{2}}$$

• $\left\{ |\omega_j^{\pm}\rangle ; \ 0 \le j \le n-1 \right\}$ forms an orthonomal basis.

- $\Rightarrow I = \sum_{j=0}^{n-1} \left(|\omega_j^+\rangle \langle \omega_j^+| + |\omega_j^-\rangle \langle \omega_j^-| \right) \text{ The completeness relation}$
 - $|\omega_{i}^{+}\rangle$ and $|\omega_{i}^{-}\rangle$ are the +1 and -1 eigenstates of U'.
- $\Rightarrow U' = \sum_{j=0}^{n-1} \left(|\omega_j^+\rangle \langle \omega_j^+| |\omega_j^-\rangle \langle \omega_j^-| \right) \text{The spectral theorem}$

Let $|u_j\rangle$ be the *j*-th column vector in *U* and $|j\rangle$ be the *j*-th computational basis vector. *U'* can be factored into *n* reflections in O_{2n} .

$$U' = \prod_{j=0}^{n-1} R_{|\omega_j^-\rangle}, \quad |\omega_j^-\rangle = \frac{\left(|-\rangle |j\rangle - |+\rangle |u_j\rangle\right)}{\sqrt{2}}$$

• $\left\{ |\omega_j^{\pm}\rangle ; \ 0 \le j \le n-1 \right\}$ forms an orthonomal basis.

$$\Rightarrow I = \sum_{j=0}^{n-1} \left(\ket{\omega_j^+} \bra{\omega_j^+} + \ket{\omega_j^-} \bra{\omega_j^-} \right)$$
 The completeness relation

•
$$|\omega_{j}^{+}
angle$$
 and $|\omega_{j}^{-}
angle$ are the +1 and –1 eigenstates of U'

$$\Rightarrow U' = \sum_{j=0}^{n-1} \left(|\omega_j^+\rangle \langle \omega_j^+| - |\omega_j^-\rangle \langle \omega_j^-| \right) \text{The spectral theorem}$$
$$I - U' = 2 \sum_{j=0}^{n-1} |\omega_j^-\rangle \langle \omega_j^-| \Rightarrow U' = I - 2 \sum_{j=0}^{n-1} |\omega_j^-\rangle \langle \omega_j^-| = \prod_{j=0}^{n-1} R_{|\omega_j^-\rangle}.$$

Gate Complexity of the Householder Algorithm

Theorem

Let $U \in O_n$ with lde(U) = k. Then U can be represented by $O(n^2k)$ generators from \mathcal{G}_n using the Householder algorithm.

Proof Sketch.

• U can be simulated by U' where

$$U' = |+\rangle \langle -| \otimes U + |-\rangle \langle +| \otimes U^{\dagger} = \prod_{j=0}^{n-1} R_{|\omega_j^-\rangle}.$$

Gate Complexity of the Householder Algorithm

Theorem

Let $U \in O_n$ with lde(U) = k. Then U can be represented by $O(n^2k)$ generators from \mathcal{G}_n using the Householder algorithm.

Proof Sketch.

• U can be simulated by U' where

$$U' = |+\rangle \langle -| \otimes U + |-\rangle \langle +| \otimes U^{\dagger} = \prod_{j=0}^{n-1} R_{|\omega_j^-\rangle}.$$

• $R_{|\omega_i^-\rangle}$ can be exactly represented by O(nk) generators from \mathcal{G}_n .

Gate Complexity of the Householder Algorithm

Theorem

Let $U \in O_n$ with lde(U) = k. Then U can be represented by $O(n^2k)$ generators from \mathcal{G}_n using the Householder algorithm.

Proof Sketch.

• U can be simulated by U' where

$$U' = |+\rangle \langle -| \otimes U + |-\rangle \langle +| \otimes U^{\dagger} = \prod_{j=0}^{n-1} R_{|\omega_j^-\rangle}.$$

- $R_{|\omega_i^-\rangle}$ can be exactly represented by O(nk) generators from \mathcal{G}_n .
- To represent U, we need $n \cdot O(nk) = O(n^2k)$ generators from \mathcal{G}_n .

П

The Global Synthesis Algorithm

• The AGR algorithm carries out matrix factorization **locally** - it synthesizes one column at a time.

The Global Synthesis Algorithm

- The AGR algorithm carries out matrix factorization **locally** it synthesizes one column at a time.
- When *n* is fixed, both AGR and householder algorithms have the same worst-case gate complexity linear in *k*.

$$O(2^n k) \Longrightarrow O(k), \qquad O(n^2 k) \Longrightarrow O(k)$$

The Global Synthesis Algorithm

- The AGR algorithm carries out matrix factorization **locally** it synthesizes one column at a time.
- When *n* is fixed, both AGR and householder algorithms have the same worst-case gate complexity linear in *k*.

$$O(2^n k) \Longrightarrow O(k), \qquad O(n^2 k) \Longrightarrow O(k)$$

• To reduce the gate complexity, we take a global view of each matrix.

- The AGR algorithm carries out matrix factorization **locally** it synthesizes one column at a time.
- When *n* is fixed, both AGR and householder algorithms have the same worst-case gate complexity linear in *k*.

$$O(2^n k) \Longrightarrow O(k), \qquad O(n^2 k) \Longrightarrow O(k)$$

- To reduce the gate complexity, we take a global view of each matrix.
- Define a global synthesis method for $U \in \mathcal{L}_8$, then **leverage** this to find a global synthesis method for $U \in O_8$.

Definition

 \mathcal{L}_n is the group of **orthogonal scaled dyadic matrices**, which consists of $n \times n$ orthogonal matrices of the form $M/\sqrt{2}^k$, where M is an integer matrix and k is a nonnegative integer.

Definition

 \mathcal{L}_n is the group of **orthogonal scaled dyadic matrices**, which consists of $n \times n$ orthogonal matrices of the form $M/\sqrt{2}^k$, where M is an integer matrix and k is a nonnegative integer.

$$V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & -1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$

Orthogonal (Scaled) Dyadic Matrices

- \mathcal{L}_n is the group of **orthogonal scaled dyadic matrices**, which consists of $n \times n$ orthogonal matrices of the form $M/\sqrt{2}^k$, where M is an integer matrix and k is a nonnegative integer.
- O_n is the group of **orthogonal dyadic matrices**, which consists of $n \times n$ orthogonal matrices of the form $M/2^k$, where M is an integer matrix and k is a nonnegative integer.

Example:
$$V \in \mathcal{L}_4$$
 Example: $U \in O_4$
 $V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & -1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$
 $U = \frac{1}{2} \begin{bmatrix} 1 & -1 & -1 & -1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \\ 1 & -1 & 1 & 1 \end{bmatrix}$
Orthogonal (Scaled) Dyadic Matrices

- \mathcal{L}_n is the group of **orthogonal scaled dyadic matrices**, which consists of $n \times n$ orthogonal matrices of the form $M/\sqrt{2}^k$, where M is an integer matrix and k is a nonnegative integer.
- O_n is the group of **orthogonal dyadic matrices**, which consists of $n \times n$ orthogonal matrices of the form $M/2^k$, where M is an integer matrix and k is a nonnegative integer.

Example:
$$V \in \mathcal{L}_4$$
 Example: $U \in \mathcal{O}_4$
 $V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & -1 & 0\\ 0 & -1 & 0 & -1\\ 1 & 0 & 1 & 0\\ 0 & 1 & 0 & -1 \end{bmatrix}$
 $U = \frac{1}{\sqrt{2}^2} \begin{bmatrix} 1 & -1 & -1 & -1\\ 1 & 1 & -1 & 1\\ 1 & -1 & 1 & 1\\ 1 & -1 & 1 & 1 \end{bmatrix}$

Orthogonal (Scaled) Dyadic Matrices

- \mathcal{L}_n is the group of **orthogonal scaled dyadic matrices**, which consists of $n \times n$ orthogonal matrices of the form $M/\sqrt{2}^k$, where M is an integer matrix and k is a nonnegative integer.
- O_n is the group of **orthogonal dyadic matrices**, which consists of $n \times n$ orthogonal matrices of the form $M/2^k$, where M is an integer matrix and k is a nonnegative integer.

Example:
$$V \in \mathcal{L}_4$$
 Example: $U \in O_4$
 $V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & -1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$
 $U = \frac{1}{\sqrt{2}^2} \begin{bmatrix} 1 & -1 & -1 & -1 \\ 1 & 1 & -1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & 1 \end{bmatrix}$

• $O_n \subset \mathcal{L}_n$.

$$\mathcal{G}_n = \left\{ (-1)_{[\alpha]}, X_{[\alpha,\beta]}, K_{[\alpha,\beta,\gamma,\delta]} : 1 \le \alpha < \beta < \gamma < \delta \le n \right\}.$$

$$\mathcal{F}_n = \left\{ (-1)_{[\alpha]}, X_{[\alpha,\beta]}, K_{[\alpha,\beta,\gamma,\delta]}, I_{n/2} \otimes H : 1 \le \alpha < \beta < \gamma < \delta \le n \right\}.$$

The Circuit-Matrix Correspondence II

$$\begin{split} \mathcal{G}_n &= \left\{ (-1)_{[\alpha]}, X_{[\alpha,\beta]}, K_{[\alpha,\beta,\gamma,\delta]} : 1 \leq \alpha < \beta < \gamma < \delta \leq n \right\}.\\ \mathcal{F}_n &= \left\{ (-1)_{[\alpha]}, X_{[\alpha,\beta]}, K_{[\alpha,\beta,\gamma,\delta]}, I \otimes H : 1 \leq \alpha < \beta < \gamma < \delta \leq n \right\}. \end{split}$$

Theorem

Let U be an $n \times n$ matrix. $U \in \mathcal{L}_n$ if and only if

- U can be written as a product of elements of \mathcal{F}_n .
 - The gate complexity is $O(2^nk)$.

$$\begin{split} \mathcal{G}_n &= \left\{ (-1)_{\left[\alpha\right]}, X_{\left[\alpha,\beta\right]}, K_{\left[\alpha,\beta,\gamma,\delta\right]} : 1 \leq \alpha < \beta < \gamma < \delta \leq n \right\}. \\ \mathcal{F}_n &= \left\{ (-1)_{\left[\alpha\right]}, X_{\left[\alpha,\beta\right]}, K_{\left[\alpha,\beta,\gamma,\delta\right]}, I \otimes H : 1 \leq \alpha < \beta < \gamma < \delta \leq n \right\}. \end{split}$$

Theorem

Let U be an $n \times n$ matrix. $U \in \mathcal{L}_n$ if and only if

- U can be written as a product of elements of \mathcal{F}_n .
 - The gate complexity is $O(2^nk)$.
- U can be exactly represented by a circuit over $\{X, CX, CCX, H\}$.
 - The gate complexity is $O(2^n \log(n)k)$.

 $U \in \mathcal{L}_8$. Write $U = \frac{1}{\sqrt{2}^k} M$ with k minimal. There exists $\overrightarrow{G_1}, \dots, \overrightarrow{G_k}$ over \mathcal{F}_8 , such that $\frac{1}{\sqrt{2}^k} M \xrightarrow{\overrightarrow{G_1}} \frac{1}{\sqrt{2}^{k-1}} M' \xrightarrow{\overrightarrow{G_2}} \frac{1}{\sqrt{2}^{k-2}} M'' \xrightarrow{\overrightarrow{G_3}} \dots \xrightarrow{\overrightarrow{G_k}} \mathbb{I}.$ Therefore.

$$\overrightarrow{G_k} \cdots \overrightarrow{G_1} U = \mathbb{I} \implies U = \overrightarrow{G_1}^{-1} \cdots \overrightarrow{G_k}^{-1}.$$

Binary Pattern

Let $U \in \mathcal{L}_n$. Write $U = \frac{1}{\sqrt{2}^k} M$ with k minimal. The residue mod 2 of M is called the **binary pattern** of U, denoted as \overline{U} .

Example: $U \in \mathcal{L}_5$

$$U = \frac{1}{\sqrt{2}^4} \begin{bmatrix} 3 & 1 & -1 & 1 & 2\\ 1 & 3 & 1 & -1 & -2\\ -1 & 1 & 3 & 1 & 2\\ 1 & -1 & 1 & 3 & -2\\ -2 & 2 & -2 & 2 & 0 \end{bmatrix} \rightarrow \overline{U} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0\\ 1 & 1 & 1 & 1 & 0\\ 1 & 1 & 1 & 1 & 0\\ 1 & 1 & 1 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Binary Patterns of \mathcal{L}_8

Proposition

Let $U \in \mathcal{L}_8$ with $\operatorname{lde}_{\sqrt{2}}(U) \ge 2$. Then up to row permutation, column permutation, and taking the transpose, \overline{U} is one of the 14 binary patterns.

Proof Sketch. Case distinction using the Weight and Collision Lemmas.

Definition

Let *n* be even and $B \in \mathbb{Z}_2^{n \times n}$. B is **row-paired** if the rows of B can be partitioned into identical pairs.

Example: NOT row-paired

$$\overline{V} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Binary patterns that are NICE.

Binary patterns that are NOT NICE.

Binary patterns that are NICE.

Binary patterns that are NOT NICE.

Binary patterns that are NICE.

Binary patterns that are NOT NICE.

Weight Lemma

Let $U \in \mathcal{L}_n$ with $\operatorname{lde}_{\sqrt{2}}(U) = k$. If k > 1, the number of 1's in any column of \overline{U} is doubly-even.

Weight Lemma

Let $U \in \mathcal{L}_n$ with $\operatorname{lde}_{\sqrt{2}}(U) = k$. If k > 1, the number of 1's in any column of \overline{U} is doubly-even.

Intuition: The 1's in any two distinct columns of \overline{U} collide evenly many times.

Collision Lemma

Let $U \in \mathcal{L}_n$ with $\operatorname{lde}_{\sqrt{2}}(U) = k$. If k > 0, any two distinct columns of \overline{U} have evenly many 1's in common.

Weight Lemma

Let $U \in \mathcal{L}_n$ with $\operatorname{lde}_{\sqrt{2}}(U) = k$. If k > 1, the number of 1's in any column of \overline{U} is doubly-even.

Intuition: The 1's in any two distinct columns of \overline{U} collide evenly many times.

Collision Lemma

Let $U \in \mathcal{L}_n$ with $\operatorname{lde}_{\sqrt{2}}(U) = k$. If k > 0, any two distinct columns of \overline{U} have evenly many 1's in common.

Example: Evenly many collisions

$$u_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}, u_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Example: Oddly many collisions

$$u_{3} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}, u_{4} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

Weight Lemma

Let $U \in \mathcal{L}_n$ with $\operatorname{lde}_{\sqrt{2}}(U) = k$. If k > 1, the number of 1's in any column of \overline{U} is doubly-even.

Intuition: The 1's in any two distinct columns of \overline{U} collide evenly many times.

Collision Lemma

Let $U \in \mathcal{L}_n$ with $\operatorname{lde}_{\sqrt{2}}(U) = k$. If k > 0, any two distinct columns of \overline{U} have evenly many 1's in common.

Example: Evenly many collisions

$$u_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}, u_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Example: Oddly many collisions

$$u_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}, u_4 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

When the Binary Pattern is NICE

Lemma (Row-Paired Reduction)

Let *n* be even, $U \in \mathcal{L}_n$ with $\operatorname{lde}_{\sqrt{2}}(U) = k$. If \overline{U} is row-paired, there exists $P \in S_n$ such that $\operatorname{lde}_{\sqrt{2}}(((I \otimes H) P)U) < \operatorname{lde}_{\sqrt{2}}(U)$.

Proof Sketch. Since \overline{U} is row-paired, there exists $P \in S_n$ such that

$$PU = \frac{1}{\sqrt{2}^{k}} \begin{bmatrix} r_{1} \\ r_{2} \\ \vdots \\ r_{n} \end{bmatrix}, r_{1} \equiv r_{2}(2), \ldots, r_{n-1} \equiv r_{n}(2).$$

When the Binary Pattern is NICE

Lemma (Row-Paired Reduction)

Let *n* be even, $U \in \mathcal{L}_n$ with $\operatorname{lde}_{\sqrt{2}}(U) = k$. If \overline{U} is row-paired, there exists $P \in S_n$ such that $\operatorname{lde}_{\sqrt{2}}(((I \otimes H) P)U) < \operatorname{lde}_{\sqrt{2}}(U)$.

Proof Sketch. Since \overline{U} is row-paired, there exists $P \in S_n$ such that

$$PU = \frac{1}{\sqrt{2}^{k}} \begin{bmatrix} r_{1} \\ r_{2} \\ \vdots \\ r_{n} \end{bmatrix}, r_{1} \equiv r_{2}(2), \dots, r_{n-1} \equiv r_{n}(2). H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \text{ and } I \otimes H = \begin{bmatrix} H & 0 & 0 \\ \hline 0 & \ddots & 0 \\ \hline 0 & 0 & H \end{bmatrix}$$

implies that
$$(I \otimes H) PU = \frac{1}{\sqrt{2}^{k+1}} \begin{bmatrix} r_1 + r_2 \\ r_1 - r_2 \\ \vdots \\ r_{n-1} - r_n \end{bmatrix} = \frac{2}{\sqrt{2}^{k+1}} \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_n \end{bmatrix} = \frac{1}{\sqrt{2}^{k-1}} \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_n \end{bmatrix}, t_1, t_2, \dots, t_n \in \mathbb{Z}.$$

Lemma (When the Binary Pattern is NOT NICE)

Let $U \in \mathcal{L}_8$ with $\operatorname{lde}_{\sqrt{2}}(U) = k$. If \overline{U} is neither row-paired nor column-paired, $\overline{(I \otimes H) U(I \otimes H)}$ is row-paired and $\operatorname{lde}_{\sqrt{2}}((I \otimes H) U(I \otimes H)) \leq \operatorname{lde}_{\sqrt{2}}(U)$.

Lemma (When the Binary Pattern is NOT NICE)

Let $U \in \mathcal{L}_8$ with $\operatorname{lde}_{\sqrt{2}}(U) = k$. If \overline{U} is neither row-paired nor column-paired, $\overline{(I \otimes H) U(I \otimes H)}$ is row-paired and $\operatorname{lde}_{\sqrt{2}}((I \otimes H) U(I \otimes H)) \leq \operatorname{lde}_{\sqrt{2}}(U)$.

Proposition

Let $U \in \mathcal{L}_8$ with $\operatorname{lde}_{\sqrt{2}}(U) = k$. U can be represented by O(k) generators in \mathcal{F}_8 using the global synthesis algorithm.

Lemma (When the Binary Pattern is NOT NICE)

Let $U \in \mathcal{L}_8$ with $\operatorname{lde}_{\sqrt{2}}(U) = k$. If \overline{U} is neither row-paired nor column-paired, $\overline{(I \otimes H) U(I \otimes H)}$ is row-paired and $\operatorname{lde}_{\sqrt{2}}((I \otimes H) U(I \otimes H)) \leq \operatorname{lde}_{\sqrt{2}}(U)$.

Proposition

Let $U \in \mathcal{L}_8$ with $\operatorname{lde}_{\sqrt{2}}(U) = k$. U can be represented by O(k) generators in \mathcal{F}_8 using the global synthesis algorithm.

$$U \in \mathcal{L}_8 \xrightarrow{\qquad \text{Global Synthesis} \\ \operatorname{Ide}(U) = k \xrightarrow{\qquad \text{for } \mathcal{L}_8} U \in \mathcal{L}_8$$

Lemma (When the Binary Pattern is NOT NICE)

Let $U \in \mathcal{L}_8$ with $\operatorname{lde}_{\sqrt{2}}(U) = k$. If \overline{U} is neither row-paired nor column-paired, $\overline{(I \otimes H) U(I \otimes H)}$ is row-paired and $\operatorname{lde}_{\sqrt{2}}((I \otimes H) U(I \otimes H)) \leq \operatorname{lde}_{\sqrt{2}}(U)$.

Proposition

Let $U \in \mathcal{L}_8$ with $\operatorname{lde}_{\sqrt{2}}(U) = k$. U can be represented by O(k) generators in \mathcal{F}_8 using the global synthesis algorithm.

$$U \in \mathcal{L}_8 \xrightarrow{\qquad \text{Global Synthesis}} for \mathcal{L}_8 \xrightarrow{\qquad k \ge 2} \overline{U} \in \mathcal{P}$$

Lemma (When the Binary Pattern is NOT NICE)

Let $U \in \mathcal{L}_8$ with $\operatorname{lde}_{\sqrt{2}}(U) = k$. If \overline{U} is neither row-paired nor column-paired, $\overline{(I \otimes H) U(I \otimes H)}$ is row-paired and $\operatorname{lde}_{\sqrt{2}}((I \otimes H) U(I \otimes H)) \leq \operatorname{lde}_{\sqrt{2}}(U)$.

Proposition

Let $U \in \mathcal{L}_8$ with $\operatorname{lde}_{\sqrt{2}}(U) = k$. U can be represented by O(k) generators in \mathcal{F}_8 using the global synthesis algorithm.

Lemma (When the Binary Pattern is NOT NICE)

Let $U \in \mathcal{L}_8$ with $\operatorname{lde}_{\sqrt{2}}(U) = k$. If \overline{U} is neither row-paired nor column-paired, $\overline{(I \otimes H) U(I \otimes H)}$ is row-paired and $\operatorname{lde}_{\sqrt{2}}((I \otimes H) U(I \otimes H)) \leq \operatorname{lde}_{\sqrt{2}}(U)$.

Proposition

Let $U \in \mathcal{L}_8$ with $\operatorname{lde}_{\sqrt{2}}(U) = k$. U can be represented by O(k) generators in \mathcal{F}_8 using the global synthesis algorithm.

Pushing Hadamard through G (PHG)³

- \mathcal{L}_n is generated by $\mathcal{F}_n = \left\{ (-1)_{[\alpha]}, X_{[\alpha,\beta]}, K_{[\alpha,\beta,\gamma,\delta]}, I \otimes H : 1 \le \alpha < \beta < \gamma < \delta \le n \right\}.$
- O_n is generated by $\mathcal{G}_n = \{(-1)_{[\alpha]}, X_{[\alpha,\beta]}, K_{[\alpha,\beta,\gamma,\delta]} : 1 \le \alpha < \beta < \gamma < \delta \le n\}.$

³Sarah Meng Li, Neil J Ross, and Peter Selinger (2021). "Generators and relations for the group O_n ($\mathbb{Z}[1/2]$)". In: *arXiv* preprint *arXiv*:2106.01175.

Pushing Hadamard through G (PHG)³

- \mathcal{L}_n is generated by $\mathcal{F}_n = \left\{ (-1)_{[\alpha]}, X_{[\alpha,\beta]}, K_{[\alpha,\beta,\gamma,\delta]}, I \otimes H : 1 \le \alpha < \beta < \gamma < \delta \le n \right\}.$
- O_n is generated by $\mathcal{G}_n = \{(-1)_{[\alpha]}, X_{[\alpha,\beta]}, K_{[\alpha,\beta,\gamma,\delta]} : 1 \le \alpha < \beta < \gamma < \delta \le n\}.$

 $(I \otimes H)(I \otimes H) = \epsilon$ $(I \otimes H)(-1)_{[a]} = (-1)_{[a]}X_{[a,a+1]}(-1)_{[a]}(I \otimes H)$ $(I \otimes H)(-1)_{[a]} = X_{[a-1,a]}(I \otimes H)$ $(I \otimes H)X_{[a,a+1]} = (-1)_{[a+1]}(I \otimes H)$ $(I \otimes H)X_{[a,a+1]} = K_{[a-1,a,a+1,a+2]}X_{[a,a+1]}(I \otimes H)$

³Sarah Meng Li, Neil J Ross, and Peter Selinger (2021). "Generators and relations for the group O_n ($\mathbb{Z}[1/2]$)". In: arXiv preprint arXiv:2106.01175.

Pushing Hadamard through G (PHG)³

- \mathcal{L}_n is generated by $\mathcal{F}_n = \left\{ (-1)_{[\alpha]}, X_{[\alpha,\beta]}, K_{[\alpha,\beta,\gamma,\delta]}, I \otimes H : 1 \le \alpha < \beta < \gamma < \delta \le n \right\}.$
- O_n is generated by $\mathcal{G}_n = \{(-1)_{[\alpha]}, X_{[\alpha,\beta]}, K_{[\alpha,\beta,\gamma,\delta]} : 1 \le \alpha < \beta < \gamma < \delta \le n\}.$

$$\begin{aligned} (I \otimes H)(I \otimes H) &= \epsilon \\ (I \otimes H)(-1)_{[a]} &= (-1)_{[a]}X_{[a,a+1]}(-1)_{[a]}(I \otimes H) \\ (I \otimes H)(-1)_{[a]} &= X_{[a-1,a]}(I \otimes H) \\ (I \otimes H)X_{[a,a+1]} &= (-1)_{[a+1]}(I \otimes H) \\ (I \otimes H)X_{[a,a+1]} &= K_{[a-1,a,a+1,a+2]}X_{[a,a+1]}(I \otimes H) \end{aligned}$$

Intuition: Pushing $I \otimes H$ through an element in \mathcal{G}_n adds O(1) gates.

³Sarah Meng Li, Neil J Ross, and Peter Selinger (2021). "Generators and relations for the group O_n ($\mathbb{Z}[1/2]$)". In: *arXiv* preprint *arXiv*:2106.01175.

Global Synthesis for O_8

Theorem

Let $U \in O_8$ with lde(U) = k. U can be represented by O(k) generators in \mathcal{G}_8 using the global synthesis algorithm.

Theorem

Let $U \in O_8$ with lde(U) = k. U can be represented by O(k) generators in \mathcal{G}_8 using the global synthesis algorithm.

Theorem

Let $U \in O_8$ with lde(U) = k. U can be represented by O(k) generators in \mathcal{G}_8 using the global synthesis algorithm.

$$U \in O_8 \longrightarrow \begin{array}{c} \text{Global Synthesis} \\ \text{for } \mathcal{L}_8 \end{array} \longrightarrow U = C_1(I \otimes H)C_2(I \otimes H)C_3(I \otimes H)C_4(I \otimes H)C_5$$
$$C_1, C_2, C_3, C_4, C_5 \text{ over } \mathcal{G}_8 \\ \text{length}(U) = O(k) \end{array}$$

Global Synthesis for O_8

Theorem

Let $U \in O_8$ with lde(U) = k. U can be represented by O(k) generators in \mathcal{G}_8 using the global synthesis algorithm.

Global Synthesis for O_8

Theorem

Let $U \in O_8$ with lde(U) = k. U can be represented by O(k) generators in \mathcal{G}_8 using the global synthesis algorithm.

• **Explore** the complexity-theoretic properties of Toffoli-Hadamard circuits through the lens of MQCSP⁴.

⁴Nai-Hui Chia et al. (2021). "Quantum meets the minimum circuit size problem". In: *arXiv* preprint *arXiv*:2108.03171.

- **Explore** the complexity-theoretic properties of Toffoli-Hadamard circuits through the lens of MQCSP⁴.
- Manifest the advantage of our global synthesis algorithm by scaling it up.

⁴Nai-Hui Chia et al. (2021). "Quantum meets the minimum circuit size problem". In: *arXiv* preprint *arXiv*:2108.03171.

- **Explore** the complexity-theoretic properties of Toffoli-Hadamard circuits through the lens of MQCSP⁴.
- Manifest the advantage of our global synthesis algorithm by scaling it up.
- **Present** the global synthesis results of O_n and \mathcal{L}_n using $\{X, CX, CCX, K\}$ and $\{X, CX, CCX, H\}$ directly.

⁴Nai-Hui Chia et al. (2021). "Quantum meets the minimum circuit size problem". In: *arXiv* preprint *arXiv*:2108.03171.

- **Explore** the complexity-theoretic properties of Toffoli-Hadamard circuits through the lens of MQCSP⁴.
- Manifest the advantage of our global synthesis algorithm by scaling it up.
- **Present** the global synthesis results of O_n and \mathcal{L}_n using $\{X, CX, CCX, K\}$ and $\{X, CX, CCX, H\}$ directly.
- **Design** a standalone global synthesis for O_8 , rather than relying on the corresponding result for \mathcal{L}_8 and the commutation of generators.

⁴Nai-Hui Chia et al. (2021). "Quantum meets the minimum circuit size problem". In: *arXiv* preprint *arXiv*:2108.03171.

Thank you!

