Improved Synthesis of Toffoli-Hadamard Circuits

Matthew Amy ${ }^{1}$, Andrew N. Glaudell ${ }^{2}$, Sarah Meng L ${ }^{3,4}$, Neil J. Ross ${ }^{5}$
[1] School of Computing Science, Simon Fraser University
[2] Photonic Inc.
[3] Institute for Quantum Computing, University of Waterloo
[4] Department of Combinatorics and Optimization, University of Waterloo
[5] Department of Mathematics and Statistics, Dallousie University

Gabriel Tovar

Restricted Clifford+T Circuits ${ }^{ }$

A Toffoli-K Circuit

[^0]
Basic Gates

$$
\begin{gathered}
(-1)=[-1] \\
H=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right], \quad K=H \otimes H=\frac{1}{2}\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right] \\
X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad C X=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]=\left[\begin{array}{l|l}
I_{2} & \mathbf{0} \\
\hline \mathbf{0} & X
\end{array}\right], \quad C C X=\left[\begin{array}{l|l}
I_{6} & \mathbf{0} \\
\hline \mathbf{0} & X
\end{array}\right]
\end{gathered}
$$

Our Motivations

- A family of quantum circuits \Longleftrightarrow A group of matrices.

Our Motivations

- A family of quantum circuits \Longleftrightarrow A group of matrices.
- Studying matrix groups is a way to study quantum circuits.

Our Motivations

- A family of quantum circuits \Longleftrightarrow A group of matrices.
- Studying matrix groups is a way to study quantum circuits.
- For the matrix group associated with the Toffoli-Hadamard circuits, use a convenient set of generators and study the factorization of group elements into a sequence of these generators.

Our Motivations

- A family of quantum circuits \Longleftrightarrow A group of matrices.
- Studying matrix groups is a way to study quantum circuits.
- For the matrix group associated with the Toffoli-Hadamard circuits, use a convenient set of generators and study the factorization of group elements into a sequence of these generators.
\Rightarrow The exact synthesis algorithm

Our Motivations

- A family of quantum circuits \Longleftrightarrow A group of matrices.
- Studying matrix groups is a way to study quantum circuits.
- For the matrix group associated with the Toffoli-Hadamard circuits, use a convenient set of generators and study the factorization of group elements into a sequence of these generators.
\Rightarrow The exact synthesis algorithm
- A factorization is optimal if the sequence is a shortest possible sequence.

Our Motivations

- A family of quantum circuits \Longleftrightarrow A group of matrices.
- Studying matrix groups is a way to study quantum circuits.
- For the matrix group associated with the Toffoli-Hadamard circuits, use a convenient set of generators and study the factorization of group elements into a sequence of these generators.
\Rightarrow The exact synthesis algorithm
- A factorization is optimal if the sequence is a shortest possible sequence.
- Each generator can be expressed as a short circuit.

Our Motivations

- A family of quantum circuits \Longleftrightarrow A group of matrices.
- Studying matrix groups is a way to study quantum circuits.
- For the matrix group associated with the Toffoli-Hadamard circuits, use a convenient set of generators and study the factorization of group elements into a sequence of these generators.
\Rightarrow The exact synthesis algorithm
- A factorization is optimal if the sequence is a shortest possible sequence.
- Each generator can be expressed as a short circuit.
\Rightarrow A good solution to this factorization problem yields a good synthesis.

Our Results

The Local Synthesis Algorithm
 - The gate complexity of the exactly synthesized circuit: $O\left(2^{n} \log (n) k\right)$

[^1]
Our Results

[1] Kliuchnikov, V. (2013). Synthesis of unitaries with Clifford+ T circuits. arXiv preprint arXiv:1306.3200.

Our Results

The Local Synthesis
 Algorithm

- The gate complexity of the exactly synthesized circuit: $O\left(2^{n} \log (n) k\right)$

[1] Kliuchnikov, V. (2013). Synthesis of unitaries with Clifford+ T circuits. arXiv preprint arXiv:1306.3200.
[2] Russell, T. (2014). The exact synthesis of 1-and 2-qubit Clifford+ T circuits. arXiv preprint arXiv:1408.6202.
[3] Niemann, P., Wille, R., \& Drechsler, R. (2020). Advanced exact synthesis of Clifford+ T circuits. Quantum
Information Processing, 19, 1-23.

Orthogonal Dyadic Matrices

- $\mathbb{Z}\left[\frac{1}{2}\right]=\left\{\left.\frac{u}{2 q} \right\rvert\, u \in \mathbb{Z}, q \in \mathbb{N}\right\}$ is the ring of dyadic fractions.

Orthogonal Dyadic Matrices

- $\mathbb{Z}\left[\frac{1}{2}\right]=\left\{\left.\frac{u}{2 q} \right\rvert\, u \in \mathbb{Z}, q \in \mathbb{N}\right\}$ is the ring of dyadic fractions.
- $\mathrm{O}_{n}\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)$ is the group of orthogonal dyadic matrices, which consists of $n \times n$ orthogonal matrices of the form $M / 2^{k}$, where M is an integer matrix and k is a nonnegative integer. For short, we denote it as O_{n}.

Orthogonal Dyadic Matrices

- $\mathbb{Z}\left[\frac{1}{2}\right]=\left\{\left.\frac{u}{2 q} \right\rvert\, u \in \mathbb{Z}, q \in \mathbb{N}\right\}$ is the ring of dyadic fractions.
- $\mathrm{O}_{n}\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)$ is the group of orthogonal dyadic matrices, which consists of $n \times n$ orthogonal matrices of the form $M / 2^{k}$, where M is an integer matrix and k is a nonnegative integer. For short, we denote it as O_{n}.

Example: $U \in O_{5}$

$$
U=\left[\begin{array}{rrrrr}
3 / 4 & 1 / 4 & -1 / 4 & 1 / 4 & 1 / 2 \\
1 / 4 & 3 / 4 & 1 / 4 & -1 / 4 & -1 / 2 \\
-1 / 4 & 1 / 4 & 3 / 4 & 1 / 4 & 1 / 2 \\
1 / 4 & -1 / 4 & 1 / 4 & 3 / 4 & -1 / 2 \\
-1 / 2 & 1 / 2 & -1 / 2 & 1 / 2 & 0
\end{array}\right]
$$

Orthogonal Dyadic Matrices

- $\mathbb{Z}\left[\frac{1}{2}\right]=\left\{\left.\frac{u}{2 q} \right\rvert\, u \in \mathbb{Z}, q \in \mathbb{N}\right\}$ is the ring of dyadic fractions.
- $\mathrm{O}_{n}\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)$ is the group of orthogonal dyadic matrices, which consists of $n \times n$ orthogonal matrices of the form $M / 2^{k}$, where M is an integer matrix and k is a nonnegative integer. For short, we denote it as O_{n}.

Example: $U \in O_{5}$

$$
U=\left[\begin{array}{rrrrr}
3 / 4 & 1 / 4 & -1 / 4 & 1 / 4 & 1 / 2 \\
1 / 4 & 3 / 4 & 1 / 4 & -1 / 4 & -1 / 2 \\
-1 / 4 & 1 / 4 & 3 / 4 & 1 / 4 & 1 / 2 \\
1 / 4 & -1 / 4 & 1 / 4 & 3 / 4 & -1 / 2 \\
-1 / 2 & 1 / 2 & -1 / 2 & 1 / 2 & 0
\end{array}\right]
$$

Orthogonal Dyadic Matrices

- $\mathbb{Z}\left[\frac{1}{2}\right]=\left\{\left.\frac{u}{2^{q}} \right\rvert\, u \in \mathbb{Z}, q \in \mathbb{N}\right\}$ is the ring of dyadic fractions.
- $\mathrm{O}_{n}\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)$ is the group of orthogonal dyadic matrices, which consists of $n \times n$ orthogonal matrices of the form $M / 2^{k}$, where M is an integer matrix and k is a nonnegative integer. For short, we denote it as O_{n}.

Example: $U \in O_{5}$

$$
U=\frac{1}{2^{2}}\left[\begin{array}{rrrrr}
3 & 1 & -1 & 1 & 2 \\
1 & 3 & 1 & -1 & -2 \\
-1 & 1 & 3 & 1 & 2 \\
1 & -1 & 1 & 3 & -2 \\
-2 & 2 & -2 & 2 & 0
\end{array}\right]
$$

The Circuit-Matrix Correspondence I

Theorem (The AGR Algorithm')

For an n-dimensional orthogonal matrix U, it can be exactly represented by a circuit over $\{X, C X, C C X, K\}$ iff $U \in O_{n}$.

[^2]
The Circuit-Matrix Correspondence I

Theorem (The AGR Algorithm')

For an n-dimensional orthogonal matrix U, it can be exactly represented by a circuit over $\{X, C X, C C X, K\}$ iff $U \in O_{n}$.

$$
\mathcal{G}_{n}=\left\{(-1)_{[\alpha]}, X_{[\alpha, \beta]}, K_{[\alpha, \beta, \gamma, \delta]}: 1 \leq \alpha<\beta<\gamma<\delta \leq n\right\} .
$$

[^3]
The Circuit-Matrix Correspondence I

Theorem (The AGR Algorithm¹)

For an n-dimensional orthogonal matrix U, it can be exactly represented by a circuit over $\{X, C X, C C X, K\}$ iff $U \in O_{n}$.

$$
\mathcal{G}_{n}=\left\{(-1)_{[\alpha]}, X_{[\alpha, \beta]}, K_{[\alpha, \beta, \gamma, \delta]}: 1 \leq \alpha<\beta<\gamma<\delta \leq n\right\} .
$$

- When $n=2^{m}$, every operator in \mathcal{G}_{n} can be exactly represented by $O(\log (n))$ operators in $\{X, C X, C C X, K\}$.

[^4]
The Circuit-Matrix Correspondence I

Theorem (The AGR Algorithm')

For an n-dimensional orthogonal matrix U, it can be exactly represented by a circuit over $\{X, C X, C C X, K\}$ iff $U \in O_{n}$.

$$
\mathcal{G}_{n}=\left\{(-1)_{[\alpha]}, X_{[\alpha, \beta]}, K_{[\alpha, \beta, \gamma, \delta]}: 1 \leq \alpha<\beta<\gamma<\delta \leq n\right\} .
$$

- When $n=2^{m}$, every operator in \mathcal{G}_{n} can be exactly represented by $O(\log (n))$ operators in $\{X, C X, C C X, K\}$.

Theorem (The AGR Algorithm)

For an n-dimensional orthogonal matrix U, it can be written as a product of elements of \mathcal{G}_{n} iff $U \in O_{n}$.

[^5]
The Two-Level Operator: $U_{[\alpha, \beta]}$

Definition

Let $U=\left[\begin{array}{ll}x_{1,1} & x_{1,2} \\ x_{2,1} & x_{2,2}\end{array}\right]$. The action of $U_{[\alpha, \beta]}, 1 \leq \alpha<\beta \leq n$, is defined as

$$
U_{[\alpha, \beta]} v=w, \text { where }\left\{\begin{array}{l}
{\left[\begin{array}{l}
w_{\alpha} \\
w_{\beta}
\end{array}\right]=U\left[\begin{array}{l}
v_{\alpha} \\
v_{\beta}
\end{array}\right],} \\
w_{i}=v_{i}, i \notin\{\alpha, \beta\} .
\end{array}\right.
$$

Example:

$$
\text { Let } X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \text {. Then } X_{[2,3]}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text { and } X_{[2,3]}\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
v_{1} \\
v_{3} \\
v_{2} \\
v_{4}
\end{array}\right] \text {. }
$$

The Four-Level Operator: $U_{[\alpha, \beta, \gamma, \delta]}$

Similarly, we can create a four-level operator by embedding a 4×4 matrix U into an $n \times n$ identity matrix.

$$
\text { Let } K=\frac{1}{2}\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right] . \text { Then } K_{[1,2,4,6]}=\left[\begin{array}{cccccc}
1 / 2 & 1 / 2 & 0 & 1 / 2 & 0 & 1 / 2 \\
1 / 2 & -1 / 2 & 0 & 1 / 2 & 0 & -1 / 2 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 / 2 & 1 / 2 & 0 & -1 / 2 & 0 & -1 / 2 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 / 2 & -1 / 2 & 0 & -1 / 2 & 0 & 1 / 2
\end{array}\right] \text {. }
$$

The AGR Algorithm

- The algorithm proceeds one column at a time, reducing each column to a corresponding basis vector.
- While outputting a word $\overrightarrow{G_{\ell}}$ after each iteration, the algorithm recursively acts on the input matrix until it is reduced to the identity matrix I.

$$
\overrightarrow{G_{\ell}} \cdots \cdot \overrightarrow{G_{1}} M=\mathbb{I} \Rightarrow M={\overrightarrow{G_{1}}}^{-1} \cdots \cdot \overrightarrow{G_{\ell}}-1
$$

The AGR Algorithm

- The algorithm proceeds one column at a time, reducing each column to a corresponding basis vector.
- While outputting a word $\overrightarrow{G_{\ell}}$ after each iteration, the algorithm recursively acts on the input matrix until it is reduced to the identity matrix I.

The AGR Algorithm

- The algorithm proceeds one column at a time, reducing each column to a corresponding basis vector.
- While outputting a word $\overrightarrow{G_{\ell}}$ after each iteration, the algorithm recursively acts on the input matrix until it is reduced to the identity matrix I.

The Least Denominator Exponent (LDE)

Let $t \in \mathbb{Z}\left[\frac{1}{2}\right]$. $t=\frac{a}{2^{k}}$, where $a \in \mathbb{Z}$ and $k \in \mathbb{N}$. k is a denominator exponent for t. The minimal such k is called the least denominator exponent of t, written lde (t).

Example: $\operatorname{lde}(v)=6$

$$
v=\frac{1}{2^{7}}\left[\begin{array}{c}
54 \\
62 \\
98 \\
2 \\
2 \\
2 \\
2 \\
2
\end{array}\right]=\frac{2}{2^{7}}\left[\begin{array}{c}
27 \\
31 \\
49 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]=\frac{1}{2^{6}}\left[\begin{array}{c}
27 \\
31 \\
49 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

The Least Denominator Exponent (LDE)

Let $t \in \mathbb{Z}\left[\frac{1}{2}\right] . t=\frac{a}{2^{k}}$, where $a \in \mathbb{Z}$ and $k \in \mathbb{N}$. k is a denominator exponent for t. The minimal such k is called the least denominator exponent of t, written lde (t).

Example: $\operatorname{lde}(v)=6$

$$
v=\frac{1}{2^{7}}\left[\begin{array}{c}
54 \\
62 \\
98 \\
2 \\
2 \\
2 \\
2 \\
2
\end{array}\right]=\frac{2}{2^{7}}\left[\begin{array}{c}
27 \\
31 \\
49 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]=\frac{1}{2^{6}}\left[\begin{array}{c}
27 \\
31 \\
49 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

The Least Denominator Exponent (LDE)

Let $t \in \mathbb{Z}\left[\frac{1}{2}\right]$. $t=\frac{a}{2^{k}}$, where $a \in \mathbb{Z}$ and $k \in \mathbb{N}$. k is a denominator exponent for t. The minimal such k is called the least denominator exponent of t, written lde (t).

Example: $\operatorname{lde}(v)=6$

$$
v=\frac{1}{2^{7}}\left[\begin{array}{c}
54 \\
62 \\
98 \\
2 \\
2 \\
2 \\
2 \\
2
\end{array}\right]=\frac{2}{2^{7}}\left[\begin{array}{c}
27 \\
31 \\
49 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]=\frac{1}{2^{6}}\left[\begin{array}{c}
27 \\
31 \\
49 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

The Least Denominator Exponent (LDE)

Let $t \in \mathbb{Z}\left[\frac{1}{2}\right] . t=\frac{a}{2^{k}}$, where $a \in \mathbb{Z}$ and $k \in \mathbb{N}$. k is a denominator exponent for t. The minimal such k is called the least denominator exponent of t, written lde (t).

Example: LDE of a column vector
Example: LDE of a matrix

$$
\begin{gathered}
v=\frac{1}{2^{7}}\left[\begin{array}{c}
54 \\
62 \\
98 \\
2 \\
2 \\
2 \\
2 \\
2
\end{array}\right]=\frac{2}{2^{7}}\left[\begin{array}{c}
27 \\
31 \\
49 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]=\frac{1}{2^{6}}\left[\begin{array}{c}
27 \\
31 \\
49 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right] \\
\operatorname{lde}(v)=6
\end{gathered}
$$

$$
U=\frac{1}{2}\left[\begin{array}{rrrrrrrr}
-1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
-1 & -1 & 0 & 1 & 0 & 1 & 0 & 0 \\
-1 & 1 & -1 & 0 & -1 & 0 & 0 & 0 \\
-1 & -1 & 0 & -1 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 & -1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2
\end{array}\right]
$$

Lemma (Base Case)

Let $v \in \mathbb{Z}\left[\frac{1}{2}\right]^{n}$ be a unit vector with $\operatorname{lde}(v)=k$. If $k=0, v= \pm e_{j}$ for some $j \in\{1, \ldots, n\}$.

Lemma (Base Case)

Let $v \in \mathbb{Z}\left[\frac{1}{2}\right]^{n}$ be a unit vector with $\operatorname{lde}(v)=k$. If $k=0, v= \pm e_{j}$ for some $j \in\{1, \ldots, n\}$.

Lemma (Weight)

Let $v \in \mathbb{Z}\left[\frac{1}{2}\right]^{n}$ be a unit vector with $\operatorname{lde}(v)=k$. Let $w=2^{k} v$. If $k>0$, the number of odd entries in w is a multiple of 4 .

Lemma (Base Case)

Let $v \in \mathbb{Z}\left[\frac{1}{2}\right]^{n}$ be a unit vector with $\operatorname{lde}(v)=k$. If $k=0, v= \pm e_{j}$ for some $j \in\{1, \ldots, n\}$.

Lemma (Weight)

Let $v \in \mathbb{Z}\left[\frac{1}{2}\right]^{n}$ be a unit vector with $\operatorname{lde}(v)=k$. Let $w=2^{k} v$. If $k>0$, the number of odd entries in w is a multiple of 4 .

Lemma (Parity Reduction)

Let $u_{1}, u_{2}, u_{3}, u_{4}$ be odd integers. Then there exist $\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4} \in \mathbb{Z}_{2}$ such that

$$
K_{[1,2,3,4]}(-1)_{[1]}^{\tau_{1}}(-1)_{[2]}^{\tau_{2}}(-1)_{[3]}^{\tau_{3}}(-1)_{[4]}^{\tau_{4}}\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right]=\left[\begin{array}{l}
u_{1}^{\prime} \\
u_{2}^{\prime} \\
u_{3}^{\prime} \\
u_{4}^{\prime}
\end{array}\right], u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, u_{4}^{\prime} \text { are even integers. }
$$

Example: The Column Reduction

Example: Input: $v \in \mathbb{Z}\left[\frac{1}{2}\right]^{8} \quad$ Output: $G_{1}, G_{2}, G_{3} \quad$ Result: $G_{3} \cdot G_{2} \cdot G_{1} \cdot v=e_{1}$
$v: \quad \frac{1}{4}\left(\begin{array}{c}-1 \\ 1 \\ -1 \\ -1 \\ 3 \\ 1 \\ 1 \\ 1\end{array}\right)$

Example: The Column Reduction

Example: Input: $v \in \mathbb{Z}\left[\frac{1}{2}\right]^{8} \quad$ Output: $G_{1}, G_{2}, G_{3} \quad$ Result: $G_{3} \cdot G_{2} \cdot G_{1} \cdot v=e_{1}$

Example: The Column Reduction

Example: Input: $v \in \mathbb{Z}\left[\frac{1}{2}\right]^{8} \quad$ Output: $G_{1}, G_{2}, G_{3} \quad$ Result: $G_{3} \cdot G_{2} \cdot G_{1} \cdot v=e_{1}$

$$
v^{\prime \prime}: \frac{1}{4}\left(\begin{array}{c}
2 \\
0 \\
0 \\
0 \\
0 \\
-2 \\
-2 \\
-2
\end{array}\right)=\frac{1}{2}\left(\begin{array}{c}
1 \\
0 \\
0 \\
0 \\
0 \\
-1 \\
-1 \\
-1
\end{array}\right)
$$

Example: The Column Reduction

Example: Input: $v \in \mathbb{Z}\left[\frac{1}{2}\right]^{8} \quad$ Output: $G_{1}, G_{2}, G_{3} \quad$ Result: $G_{3} \cdot G_{2} \cdot G_{1} \cdot v=e_{1}$

Gate Complexity of the AGR Algorithm

Theorem

Let $U \in O_{n}$ with $\operatorname{lde}(U)=k . U$ can be exactly represented by $O\left(2^{n} k\right)$ generators over \mathcal{G}_{n}.

Gate Complexity of the AGR Algorithm

Theorem

Let $U \in O_{n}$ with $\operatorname{lde}(U)=k . U$ can be exactly represented by $O\left(2^{n} k\right)$ generators over \mathcal{G}_{n}.

Proof Sketch.

- Each row operation may increase the Ide of any column in U by 1.

Gate Complexity of the AGR Algorithm

Theorem

Let $U \in O_{n}$ with $\operatorname{lde}(U)=k . U$ can be exactly represented by $O\left(2^{n} k\right)$ generators over \mathcal{G}_{n}.

Proof Sketch.

- Each row operation may increase the Ide of any column in U by 1.
- During reduction, the Ide of any other column may increase up to $2 k$.

Gate Complexity of the AGR Algorithm

Theorem

Let $U \in O_{n}$ with $\operatorname{lde}(U)=k . U$ can be exactly represented by $O\left(2^{n} k\right)$ generators over \mathcal{G}_{n}.

Proof Sketch.

- Each row operation may increase the Ide of any column in U by 1.
- During reduction, the Ide of any other column may increase up to $2 k$.

$$
f_{\mathbf{u}_{1}}=O(n k), \quad f_{\mathbf{u}_{2}}=O((n-1) 2 k), \quad f_{\mathbf{u}_{3}}=O\left((n-2) 2^{2} k\right), \quad \ldots, \quad f_{\mathbf{u}_{n}}=O\left(2^{n-1} k\right) .
$$

Gate Complexity of the AGR Algorithm

Theorem

Let $U \in O_{n}$ with $\operatorname{lde}(U)=k . U$ can be exactly represented by $O\left(2^{n} k\right)$ generators over \mathcal{G}_{n}.

Proof Sketch.

- Each row operation may increase the Ide of any column in U by 1.
- During reduction, the Ide of any other column may increase up to $2 k$.

$$
f_{\mathbf{u}_{1}}=O(n k), \quad f_{\mathbf{u}_{2}}=O((n-1) 2 k), \quad f_{\mathbf{u}_{3}}=O\left((n-2) 2^{2} k\right), \quad \ldots, \quad f_{\mathbf{u}_{n}}=O\left(2^{n-1} k\right) .
$$

$$
S_{n}=\sum_{i=1}^{n} f_{\mathbf{u}_{i}}=\sum_{i=1}^{n}(n-i+1) 2^{i-1} k=O\left(2^{n} k\right) .
$$

The Householder Algorithm²

With one ancilla, the gate complexity of exactly synthesizing O_{n} over \mathcal{G}_{n} is reduced from $O\left(2^{n} k\right)$ to $O\left(n^{2} k\right)$.

Definition

Let $|\psi\rangle$ be an n-dimensional unit vector. The reflection operator around $|\psi\rangle$ is

$$
R_{|\psi\rangle}=I-2|\psi\rangle\langle\psi| .
$$

- $R_{|\psi\rangle}=R_{|\psi\rangle}^{\dagger}$ and $R_{|\psi\rangle}^{2}=(I-2|\psi\rangle\langle\psi|)(I-2|\psi\rangle\langle\psi|)=I$.

[^6]
The Householder Algorithm²

With one ancilla, the gate complexity of exactly synthesizing O_{n} over \mathcal{G}_{n} is reduced from $O\left(2^{n} k\right)$ to $O\left(n^{2} k\right)$.

Definition

Let $|\psi\rangle$ be an n-dimensional unit vector. The reflection operator around $|\psi\rangle$ is

$$
R_{|\psi\rangle}=I-2|\psi\rangle\langle\psi| .
$$

- $R_{|\psi\rangle}=R_{|\psi\rangle}^{\dagger}$ and $R_{|\psi\rangle}^{2}=(I-2|\psi\rangle\langle\psi|)(I-2|\psi\rangle\langle\psi|)=I$.
- $R_{|\psi\rangle}$ is unitary: $R_{|\psi\rangle} R_{|\psi\rangle}^{\dagger}=R_{|\psi\rangle}^{\dagger} R_{|\psi\rangle}=R_{|\psi\rangle}^{2}=I$.

[^7]
The Householder Algorithm²

With one ancilla, the gate complexity of exactly synthesizing O_{n} over \mathcal{G}_{n} is reduced from $O\left(2^{n} k\right)$ to $O\left(n^{2} k\right)$.

Definition

Let $|\psi\rangle$ be an n-dimensional unit vector. The reflection operator around $|\psi\rangle$ is

$$
R_{|\psi\rangle}=I-2|\psi\rangle\langle\psi| .
$$

- $R_{|\psi\rangle}=R_{|\psi\rangle}^{\dagger}$ and $R_{|\psi\rangle}^{2}=(I-2|\psi\rangle\langle\psi|)(I-2|\psi\rangle\langle\psi|)=I$.
- $R_{|\psi\rangle}$ is unitary: $R_{|\psi\rangle} R_{|\psi\rangle}^{\dagger}=R_{|\psi\rangle}^{\dagger} R_{|\psi\rangle}=R_{|\psi\rangle}^{2}=I$.
- If $|\psi\rangle=|v\rangle / 2^{k}, R_{|\psi\rangle} \in O_{n}$.

[^8]
Gate Complexity of the Reflection Operator

Proposition

Let $|\psi\rangle=|\nu\rangle / 2^{k}$ be an n-dimensional unit vector. $|\psi\rangle$ is an integer vector and $\operatorname{lde}(|\psi\rangle)=k$. The reflection operator $R_{|\psi\rangle}$ can be exactly represented by $O(n k)$ generators over \mathcal{G}_{n}.

Proof Sketch.

$$
|\psi\rangle \longrightarrow \mathrm{AGR} \xrightarrow{G \in \mathcal{G}_{n}}
$$

Gate Complexity of the Reflection Operator

Proposition

Let $|\psi\rangle=|v\rangle / 2^{k}$ be an n-dimensional unit vector. $|\psi\rangle$ is an integer vector and $\operatorname{lde}(|\psi\rangle)=k$. The reflection operator $R_{|\psi\rangle}$ can be exactly represented by $O(n k)$ generators over \mathcal{G}_{n}.

Proof Sketch.

$$
|\psi\rangle \longrightarrow \mathrm{AGR} \xrightarrow{G \in \mathcal{G}_{n}}|0\rangle=G|\psi\rangle \equiv G^{\dagger}|0\rangle=|\psi\rangle
$$

Gate Complexity of the Reflection Operator

Proposition

Let $|\psi\rangle=|\nu\rangle / 2^{k}$ be an n-dimensional unit vector. $|\psi\rangle$ is an integer vector and $\operatorname{lde}(|\psi\rangle)=k$. The reflection operator $R_{|\psi\rangle}$ can be exactly represented by $O(n k)$ generators over \mathcal{G}_{n}.

Proof Sketch.

$$
\begin{aligned}
& |\psi\rangle \longrightarrow \mathrm{AGR} \xrightarrow{G \in \mathcal{G}_{n}}|0\rangle=G|\psi\rangle \equiv \begin{array}{l}
\left.G^{-}-\cdots\right\rangle=|\psi\rangle \\
G^{\dagger}|0\rangle
\end{array} \\
& G^{\dagger} R_{|0\rangle} G=G^{\dagger}(I-2|0\rangle\langle 0|) G=I-2|\psi\rangle\langle\psi|=: R_{|\psi\rangle}
\end{aligned}
$$

Gate Complexity of the Reflection Operator

Proposition

Let $|\psi\rangle=|v\rangle / 2^{k}$ be an n-dimensional unit vector. $|\psi\rangle$ is an integer vector and lde $(|\psi\rangle)=k$. The reflection operator $R_{|\psi\rangle}$ can be exactly represented by $O(n k)$ generators over \mathcal{G}_{n}.

Proof Sketch.

$$
|\psi\rangle \longrightarrow \mathrm{AGR} \xrightarrow{G \in \mathcal{G}_{n}}|0\rangle=G|\psi\rangle \equiv \begin{aligned}
& \Gamma------\overline{7} \\
& G^{\dagger}|0\rangle=|\psi\rangle \\
& -=---
\end{aligned}
$$

$$
G^{\dagger} R_{|0\rangle} G=G^{\dagger}(I-2|0\rangle\langle 0|) G=I-2|\psi\rangle\langle\psi|=: R_{|\psi\rangle}
$$

$$
R_{|\psi\rangle}=G^{\dagger} R_{|0\rangle} G \longrightarrow \mathrm{AGR}
$$

Gate Complexity of the Reflection Operator

Proposition

Let $|\psi\rangle=|v\rangle / 2^{k}$ be an n-dimensional unit vector. $|\psi\rangle$ is an integer vector and lde $(|\psi\rangle)=k$. The reflection operator $R_{|\psi\rangle}$ can be exactly represented by $O(n k)$ generators over \mathcal{G}_{n}.

Proof Sketch.

Gate Complexity of the Reflection Operator

Proposition

Let $|\psi\rangle=|v\rangle / 2^{k}$ be an n-dimensional unit vector. $|\psi\rangle$ is an integer vector and $\operatorname{lde}(|\psi\rangle)=k$. The reflection operator $R_{|\psi\rangle}$ can be exactly represented by $O(n k)$ generators over \mathcal{G}_{n}.

Proof Sketch.

$$
\begin{gathered}
\left.|\psi\rangle \longrightarrow \mathrm{AGR} \xrightarrow{G \in G_{n}}|0\rangle=G|\psi\rangle \equiv \begin{array}{l}
G^{\dagger}|0\rangle=|\psi\rangle \\
G^{\dagger} R_{|0\rangle} G=G^{\dagger}(I-2|0\rangle\langle 0|) G=I-2|\psi\rangle\langle\psi|=: R_{|\psi\rangle}
\end{array}\right\}, ~
\end{gathered}
$$

$$
R_{|\psi\rangle}=G^{\dagger} R_{|0\rangle} G \longrightarrow \mathrm{AGR}_{\substack{R_{|0\rangle}=(-1)_{[0]}}} C C\left(G^{\dagger}\right)=C C(G)=O(n k)
$$

Gate Complexity of the Reflection Operator

Proposition

Let $|\psi\rangle=|v\rangle / 2^{k}$ be an n-dimensional unit vector. $|\psi\rangle$ is an integer vector and $\operatorname{lde}(|\psi\rangle)=k$. The reflection operator $R_{|\psi\rangle}$ can be exactly represented by $O(n k)$ generators over \mathcal{G}_{n}.

Proof Sketch.

Unitary Simulation

Let $U \in O_{n}$. Then U can be simulated using the unitary U^{\prime} :

$$
U^{\prime}=|+\rangle\langle-| \otimes U+|-\rangle\langle+| \otimes U^{\dagger}
$$

Unitary Simulation

Let $U \in O_{n}$. Then U can be simulated using the unitary U^{\prime} :

$$
U^{\prime}=|+\rangle\langle-| \otimes U+|-\rangle\langle+| \otimes U^{\dagger}
$$

- $U^{\prime} \in O_{2 n}$ and U^{\prime} is unitary.

Unitary Simulation

Let $U \in O_{n}$. Then U can be simulated using the unitary U^{\prime} :

$$
U^{\prime}=|+\rangle\langle-| \otimes U+|-\rangle\langle+| \otimes U^{\dagger}
$$

- $U^{\prime} \in O_{2 n}$ and U^{\prime} is unitary.
- U^{\prime} is Hermitian and thus normal.

Unitary Factorization

Let $\left|u_{j}\right\rangle$ be the j-th column vector in U and $|j\rangle$ be the j-th computational basis vector. U^{\prime} can be factored into n reflections in $O_{2 n}$.

$$
U^{\prime}=\prod_{j=0}^{n-1} R_{\left|\omega_{j}^{-}\right\rangle}, \quad\left|\omega_{j}^{-}\right\rangle=\frac{\left(|-\rangle|j\rangle-|+\rangle\left|u_{j}\right\rangle\right)}{\sqrt{2}}
$$

Unitary Factorization

Let $\left|u_{j}\right\rangle$ be the j-th column vector in U and $|j\rangle$ be the j-th computational basis vector. U^{\prime} can be factored into n reflections in $O_{2 n}$.

$$
U^{\prime}=\prod_{j=0}^{n-1} R_{\left|\omega_{j}^{-}\right\rangle}, \quad\left|\omega_{j}^{-}\right\rangle=\frac{\left(|-\rangle|j\rangle-|+\rangle\left|u_{j}\right\rangle\right)}{\sqrt{2}}
$$

- $\left\{\left|\omega_{j}^{ \pm}\right\rangle ; 0 \leq j \leq n-1\right\}$ forms an orthonomal basis.

Unitary Factorization

Let $\left|u_{j}\right\rangle$ be the j-th column vector in U and $|j\rangle$ be the j-th computational basis vector. U^{\prime} can be factored into n reflections in $O_{2 n}$.

$$
U^{\prime}=\prod_{j=0}^{n-1} R_{\left|\omega_{j}^{-}\right\rangle}, \quad\left|\omega_{j}^{-}\right\rangle=\frac{\left(|-\rangle|j\rangle-|+\rangle\left|u_{j}\right\rangle\right)}{\sqrt{2}}
$$

- $\left\{\left|\omega_{j}^{ \pm}\right\rangle ; 0 \leq j \leq n-1\right\}$ forms an orthonomal basis.
$\Rightarrow I=\sum_{j=0}^{n-1}\left(\left|\omega_{j}^{+}\right\rangle\left\langle\omega_{j}^{+}\right|+\left|\omega_{j}^{-}\right\rangle\left\langle\omega_{j}^{-}\right|\right)$The completeness relation

Unitary Factorization

Let $\left|u_{j}\right\rangle$ be the j-th column vector in U and $|j\rangle$ be the j-th computational basis vector. U^{\prime} can be factored into n reflections in $O_{2 n}$.

$$
U^{\prime}=\prod_{j=0}^{n-1} R_{\left|\omega_{j}^{-}\right\rangle}, \quad\left|\omega_{j}^{-}\right\rangle=\frac{\left(|-\rangle|j\rangle-|+\rangle\left|u_{j}\right\rangle\right)}{\sqrt{2}}
$$

- $\left\{\left|\omega_{j}^{ \pm}\right\rangle ; 0 \leq j \leq n-1\right\}$ forms an orthonomal basis.
$\Rightarrow I=\sum_{j=0}^{n-1}\left(\left|\omega_{j}^{+}\right\rangle\left\langle\omega_{j}^{+}\right|+\left|\omega_{j}^{-}\right\rangle\left\langle\omega_{j}^{-}\right|\right)$The completeness relation
- $\left|\omega_{j}^{+}\right\rangle$and $\left|\omega_{j}^{-}\right\rangle$are the +1 and -1 eigenstates of U^{\prime}.

Unitary Factorization

Let $\left|u_{j}\right\rangle$ be the j-th column vector in U and $|j\rangle$ be the j-th computational basis vector. U^{\prime} can be factored into n reflections in $O_{2 n}$.

$$
U^{\prime}=\prod_{j=0}^{n-1} R_{\left|\omega_{j}^{-}\right\rangle}, \quad\left|\omega_{j}^{-}\right\rangle=\frac{\left(|-\rangle|j\rangle-|+\rangle\left|u_{j}\right\rangle\right)}{\sqrt{2}}
$$

- $\left\{\left|\omega_{j}^{ \pm}\right\rangle ; 0 \leq j \leq n-1\right\}$ forms an orthonomal basis.
$\Rightarrow I=\sum_{j=0}^{n-1}\left(\left|\omega_{j}^{+}\right\rangle\left\langle\omega_{j}^{+}\right|+\left|\omega_{j}^{-}\right\rangle\left\langle\omega_{j}^{-}\right|\right)$The completeness relation
- $\left|\omega_{j}^{+}\right\rangle$and $\left|\omega_{j}^{-}\right\rangle$are the +1 and -1 eigenstates of U^{\prime}.
$\Rightarrow U^{\prime}=\sum_{j=0}^{n-1}\left(\left|\omega_{j}^{+}\right\rangle\left\langle\omega_{j}^{+}\right|-\left|\omega_{j}^{-}\right\rangle\left\langle\omega_{j}^{-}\right|\right)$The spectral theorem

Unitary Factorization

Let $\left|u_{j}\right\rangle$ be the j-th column vector in U and $|j\rangle$ be the j-th computational basis vector. U^{\prime} can be factored into n reflections in $O_{2 n}$.

$$
U^{\prime}=\prod_{j=0}^{n-1} R_{\left|\omega_{j}^{-}\right\rangle}, \quad\left|\omega_{j}^{-}\right\rangle=\frac{\left(|-\rangle|j\rangle-|+\rangle\left|u_{j}\right\rangle\right)}{\sqrt{2}}
$$

- $\left\{\left|\omega_{j}^{ \pm}\right\rangle ; 0 \leq j \leq n-1\right\}$ forms an orthonomal basis.
$\Rightarrow I=\sum_{j=0}^{n-1}\left(\left|\omega_{j}^{+}\right\rangle\left\langle\omega_{j}^{+}\right|+\left|\omega_{j}^{-}\right\rangle\left\langle\omega_{j}^{-}\right|\right)$The completeness relation
- $\left|\omega_{j}^{+}\right\rangle$and $\left|\omega_{j}^{-}\right\rangle$are the +1 and -1 eigenstates of U^{\prime}.
$\Rightarrow U^{\prime}=\sum_{j=0}^{n-1}\left(\left|\omega_{j}^{+}\right\rangle\left\langle\omega_{j}^{+}\right|-\left|\omega_{j}^{-}\right\rangle\left\langle\omega_{j}^{-}\right|\right)$The spectral theorem

$$
I-U^{\prime}=2 \sum_{j=0}^{n-1}\left|\omega_{j}^{-}\right\rangle\left\langle\omega_{j}^{-}\right| \Rightarrow U^{\prime}=I-2 \sum_{j=0}^{n-1}\left|\omega_{j}^{-}\right\rangle\left\langle\omega_{j}^{-}\right|=\prod_{j=0}^{n-1} R_{\mid \omega_{j}^{-}} .
$$

Gate Complexity of the Householder Algorithm

Theorem

Let $U \in O_{n}$ with $\operatorname{lde}(U)=k$. Then U can be represented by $O\left(n^{2} k\right)$ generators from \mathcal{G}_{n} using the Householder algorithm.

Proof Sketch.

- U can be simulated by U^{\prime} where

$$
U^{\prime}=|+\rangle\langle-| \otimes U+|-\rangle\langle+| \otimes U^{\dagger}=\prod_{j=0}^{n-1} R_{\left|\omega_{j}^{-}\right\rangle} .
$$

Gate Complexity of the Householder Algorithm

Theorem

Let $U \in O_{n}$ with $\operatorname{lde}(U)=k$. Then U can be represented by $O\left(n^{2} k\right)$ generators from \mathcal{G}_{n} using the Householder algorithm.

Proof Sketch.

- U can be simulated by U^{\prime} where

$$
U^{\prime}=|+\rangle\langle-| \otimes U+|-\rangle\langle+| \otimes U^{\dagger}=\prod_{j=0}^{n-1} R_{\left|\omega_{j}^{-}\right\rangle} .
$$

- $R_{\left|\omega_{j}^{-}\right\rangle}$can be exactly represented by $O(n k)$ generators from \mathcal{G}_{n}.

Gate Complexity of the Householder Algorithm

Theorem

Let $U \in O_{n}$ with $\operatorname{lde}(U)=k$. Then U can be represented by $O\left(n^{2} k\right)$ generators from \mathcal{G}_{n} using the Householder algorithm.

Proof Sketch.

- U can be simulated by U^{\prime} where

$$
U^{\prime}=|+\rangle\langle-| \otimes U+|-\rangle\langle+| \otimes U^{\dagger}=\prod_{j=0}^{n-1} R_{\left|\omega_{j}^{-}\right\rangle} .
$$

- $R_{\left|\omega_{j}^{-}\right\rangle}$can be exactly represented by $O(n k)$ generators from \mathcal{G}_{n}.
- To represent U, we need $n \cdot O(n k)=O\left(n^{2} k\right)$ generators from \mathcal{G}_{n}.

The Global Synthesis Algorithm

- The AGR algorithm carries out matrix factorization locally - it synthesizes one column at a time.

The Global Synthesis Algorithm

- The AGR algorithm carries out matrix factorization locally - it synthesizes one column at a time.
- When n is fixed, both AGR and householder algorithms have the same worst-case gate complexity - linear in k.

$$
O\left(2^{n} k\right) \Longrightarrow O(k), \quad O\left(n^{2} k\right) \Longrightarrow O(k)
$$

The Global Synthesis Algorithm

- The AGR algorithm carries out matrix factorization locally - it synthesizes one column at a time.
- When n is fixed, both AGR and householder algorithms have the same worst-case gate complexity - linear in k.

$$
O\left(2^{n} k\right) \Longrightarrow O(k), \quad O\left(n^{2} k\right) \Longrightarrow O(k)
$$

- To reduce the gate complexity, we take a global view of each matrix.

The Global Synthesis Algorithm

- The AGR algorithm carries out matrix factorization locally - it synthesizes one column at a time.
- When n is fixed, both AGR and householder algorithms have the same worst-case gate complexity - linear in k.

$$
O\left(2^{n} k\right) \Longrightarrow O(k), \quad O\left(n^{2} k\right) \Longrightarrow O(k)
$$

- To reduce the gate complexity, we take a global view of each matrix.
- Define a global synthesis method for $U \in \mathcal{L}_{8}$, then leverage this to find a global synthesis method for $U \in O_{8}$.

Orthogonal Scaled Dyadic Matrices

Definition

\mathcal{L}_{n} is the group of orthogonal scaled dyadic matrices, which consists of $n \times n$ orthogonal matrices of the form $M / \sqrt{2}^{k}$, where M is an integer matrix and k is a nonnegative integer.

Orthogonal Scaled Dyadic Matrices

Definition

\mathcal{L}_{n} is the group of orthogonal scaled dyadic matrices, which consists of $n \times n$ orthogonal matrices of the form $M / \sqrt{2}^{k}$, where M is an integer matrix and k is a nonnegative integer.

Example: $V \in \mathcal{L}_{4}$

$$
V=\frac{1}{\sqrt{2}}\left[\begin{array}{rrrr}
1 & 0 & -1 & 0 \\
0 & -1 & 0 & -1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right]
$$

Orthogonal (Scaled) Dyadic Matrices

- \mathcal{L}_{n} is the group of orthogonal scaled dyadic matrices, which consists of $n \times n$ orthogonal matrices of the form $M / \sqrt{2}^{k}$, where M is an integer matrix and k is a nonnegative integer.
- O_{n} is the group of orthogonal dyadic matrices, which consists of $n \times n$ orthogonal matrices of the form $M / 2^{k}$, where M is an integer matrix and k is a nonnegative integer.

$$
V=\frac{1}{\sqrt{2}}\left[\begin{array}{rrrr}
\text { Example: } V \in \mathcal{L}_{4} & \text { Example: } U \in O_{4} \\
1 & 0 & -1 & 0 \\
0 & -1 & 0 & -1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right] \quad U=\frac{1}{2}\left[\begin{array}{rrrr}
1 & -1 & -1 & -1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1 \\
1 & -1 & 1 & 1
\end{array}\right]
$$

Orthogonal (Scaled) Dyadic Matrices

- \mathcal{L}_{n} is the group of orthogonal scaled dyadic matrices, which consists of $n \times n$ orthogonal matrices of the form $M / \sqrt{2}^{k}$, where M is an integer matrix and k is a nonnegative integer.
- O_{n} is the group of orthogonal dyadic matrices, which consists of $n \times n$ orthogonal matrices of the form $M / 2^{k}$, where M is an integer matrix and k is a nonnegative integer.

$$
V=\frac{1}{\sqrt{2}}\left[\begin{array}{rrrr}
1 & 0 & -1 & 0 \\
0 & -1 & 0 & -1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right] \quad U=\frac{1}{\sqrt{2}^{2}}\left[\begin{array}{rrrr}
1 & -1 & -1 & -1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1 \\
1 & -1 & 1 & 1
\end{array}\right], ~ E x a m p l e: U \in O_{4}
$$

Orthogonal (Scaled) Dyadic Matrices

- \mathcal{L}_{n} is the group of orthogonal scaled dyadic matrices, which consists of $n \times n$ orthogonal matrices of the form $M / \sqrt{2}^{k}$, where M is an integer matrix and k is a nonnegative integer.
- O_{n} is the group of orthogonal dyadic matrices, which consists of $n \times n$ orthogonal matrices of the form $M / 2^{k}$, where M is an integer matrix and k is a nonnegative integer.

$$
\begin{array}{rlr}
\text { Example: } V \in \mathcal{L}_{4} & \text { Example: } U \in O_{4} \\
V & \frac{1}{\sqrt{2}}\left[\begin{array}{rrrr}
1 & 0 & -1 & 0 \\
0 & -1 & 0 & -1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right] & U=\frac{1}{\sqrt{2}^{2}}\left[\begin{array}{rrrr}
1 & -1 & -1 & -1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1 \\
1 & -1 & 1 & 1
\end{array}\right]
\end{array}
$$

- $O_{n} \subset \mathcal{L}_{n}$.

The Circuit-Matrix Correspondence II

$$
\begin{aligned}
& \mathcal{G}_{n}=\left\{(-1)_{[\alpha]}, X_{[\alpha, \beta]}, K_{[\alpha, \beta, \gamma, \delta]}: 1 \leq \alpha<\beta<\gamma<\delta \leq n\right\} . \\
& \mathcal{F}_{n}=\left\{(-1)_{[\alpha]}, X_{[\alpha, \beta]}, K_{[\alpha, \beta, \gamma, \delta]}, I_{n / 2} \otimes H: 1 \leq \alpha<\beta<\gamma<\delta \leq n\right\} .
\end{aligned}
$$

The Circuit-Matrix Correspondence II

$$
\begin{aligned}
\mathcal{G}_{n} & =\left\{(-1)_{[\alpha]}, X_{[\alpha, \beta]}, K_{[\alpha, \beta, \gamma, \delta]}: 1 \leq \alpha<\beta<\gamma<\delta \leq n\right\} . \\
\mathcal{F}_{n} & =\left\{(-1)_{[\alpha]}, X_{[\alpha, \beta]}, K_{[\alpha, \beta, \gamma, \delta]}, I \otimes H: 1 \leq \alpha<\beta<\gamma<\delta \leq n\right\} .
\end{aligned}
$$

Theorem

Let U be an $n \times n$ matrix. $U \in \mathcal{L}_{n}$ if and only if

- U can be written as a product of elements of \mathcal{F}_{n}.
- The gate complexity is $O\left(2^{n} k\right)$.

The Circuit-Matrix Correspondence II

$$
\begin{aligned}
& \mathcal{G}_{n}=\left\{(-1)_{[\alpha]}, X_{[\alpha, \beta]}, K_{[\alpha, \beta, \gamma, \delta]}: 1 \leq \alpha<\beta<\gamma<\delta \leq n\right\} . \\
& \mathcal{F}_{n}=\left\{(-1)_{[\alpha]}, X_{[\alpha, \beta]}, K_{[\alpha, \beta, \gamma, \delta]}, I \otimes H: 1 \leq \alpha<\beta<\gamma<\delta \leq n\right\} .
\end{aligned}
$$

Theorem

Let U be an $n \times n$ matrix. $U \in \mathcal{L}_{n}$ if and only if

- U can be written as a product of elements of \mathcal{F}_{n}.
- The gate complexity is $O\left(2^{n} k\right)$.
- U can be exactly represented by a circuit over $\{X, C X, C C X, H\}$.
- The gate complexity is $O\left(2^{n} \log (n) k\right)$.

Intuitions

$U \in \mathcal{L}_{8}$. Write $U=\frac{1}{\sqrt{2^{k}}} M$ with k minimal. There exists $\overrightarrow{G_{1}}, \ldots, \overrightarrow{G_{k}}$ over \mathcal{F}_{8}, such that

$$
\frac{1}{\sqrt{2}^{k}} M \xrightarrow{\overrightarrow{G_{1}}} \frac{1}{\sqrt{2}^{k-1}} M^{\prime} \xrightarrow{\overrightarrow{G_{2}}} \frac{1}{\sqrt{2}^{k-2}} M^{\prime \prime} \xrightarrow{\overrightarrow{G_{3}}} \cdots \xrightarrow{\overrightarrow{G_{k}}} \mathbb{I} .
$$

Therefore,

$$
\overrightarrow{G_{k}} \cdots \cdot \overrightarrow{G_{1}} U=\mathbb{I} \Longrightarrow U={\overrightarrow{G_{1}}}^{-1} \cdots \cdot \overrightarrow{G_{k}}-1
$$

Preliminaries

Binary Pattern

Let $U \in \mathcal{L}_{n}$. Write $U=\frac{1}{\sqrt{2}^{k}} M$ with k minimal. The residue $\bmod 2$ of M is called the binary pattern of U, denoted as \bar{U}.

Example: $U \in \mathcal{L}_{5}$

$$
U=\frac{1}{\sqrt{2}^{4}}\left[\begin{array}{rrrrr}
3 & 1 & -1 & 1 & 2 \\
1 & 3 & 1 & -1 & -2 \\
-1 & 1 & 3 & 1 & 2 \\
1 & -1 & 1 & 3 & -2 \\
-2 & 2 & -2 & 2 & 0
\end{array}\right] \rightarrow \bar{U}=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Binary Patterns of \mathcal{L}_{8}

Proposition

Let $U \in \mathcal{L}_{8}$ with $\operatorname{lde}_{\sqrt{2}}(U) \geq 2$. Then up to row permutation, column permutation, and taking the transpose, \bar{U} is one of the 14 binary patterns.

Proof Sketch. Case distinction using the Weight and Collision Lemmas.

Definition

Let n be even and $B \in \mathbb{Z}_{2}^{n \times n}$. B is row-paired if the rows of B can be partitioned into identical pairs.

Example: Row-paired

$$
\bar{U}=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

Example: NOT row-paired

$$
\bar{V}=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

Binary patterns that are NICE.

$$
A=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right], \quad B=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0
\end{array}\right], \ldots, K=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Binary patterns that are NOT NICE.

$L=\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0\end{array}\right], \quad M=\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right], \quad N=\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

Binary patterns that are NICE.

$$
A=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right], \quad B=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0
\end{array}\right], \ldots, K=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Binary patterns that are NOT NICE.

$L=\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0\end{array}\right], \quad M=\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right], \quad N=\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

Binary patterns that are NICE.

$$
A=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right], \quad B=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0
\end{array}\right], \ldots, K=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Binary patterns that are NOT NICE.

$L=\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0\end{array}\right], \quad M=\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right], \quad N=\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

Number-Theoretic Properties

Weight Lemma

Let $U \in \mathcal{L}_{n}$ with $\operatorname{lde}_{\sqrt{2}}(U)=k$. If $k>1$, the number of 1 's in any column of \bar{U} is doubly-even.

Number-Theoretic Properties

Weight Lemma

Let $U \in \mathcal{L}_{n}$ with $\operatorname{lde}_{\sqrt{2}}(U)=k$. If $k>1$, the number of 1 's in any column of \bar{U} is doubly-even.

Intuition: The 1's in any two distinct columns of \bar{U} collide evenly many times.

Collision Lemma

Let $U \in \mathcal{L}_{n}$ with $^{\operatorname{lde}}{ }_{\sqrt{2}}(U)=k$. If $k>0$, any two distinct columns of \bar{U} have evenly many l's in common.

Number-Theoretic Properties

Weight Lemma

Let $U \in \mathcal{L}_{n}$ with $\operatorname{lde}_{\sqrt{2}}(U)=k$. If $k>1$, the number of 1 's in any column of \bar{U} is doubly-even.

Intuition: The 1's in any two distinct columns of \bar{U} collide evenly many times.

Collision Lemma

Let $U \in \mathcal{L}_{n}$ with $^{\operatorname{lde}}{ }_{\sqrt{2}}(U)=k$. If $k>0$, any two distinct columns of \bar{U} have evenly many 1's in common.

Example: Evenly many collisions
Example: Oddly many collisions

$$
u_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
0
\end{array}\right], u_{2}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
1
\end{array}\right]
$$

$$
u_{3}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
0
\end{array}\right], u_{4}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
1
\end{array}\right]
$$

Number-Theoretic Properties

Weight Lemma

Let $U \in \mathcal{L}_{n}$ with $\operatorname{lde}_{\sqrt{2}}(U)=k$. If $k>1$, the number of 1 's in any column of \bar{U} is doubly-even.

Intuition: The 1's in any two distinct columns of \bar{U} collide evenly many times.

Collision Lemma

Let $U \in \mathcal{L}_{n}$ with $^{\operatorname{lde}}{ }_{\sqrt{2}}(U)=k$. If $k>0$, any two distinct columns of \bar{U} have evenly many 1's in common.

Example: Evenly many collisions
Example: Oddly many collisions

$$
u_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
0
\end{array}\right], u_{2}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
1
\end{array}\right]
$$

$$
u_{3}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
0
\end{array}\right], u_{4}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
1
\end{array}\right]
$$

When the Binary Pattern is NICE

Lemma (Row-Paired Reduction)

Let n be even, $U \in \mathcal{L}_{n}$ with lde $_{\sqrt{2}}(U)=k$. If \bar{U} is row-paired, there exists $P \in S_{n}$ such that $\operatorname{lde}_{\sqrt{2}}(((I \otimes H) P) U)<\operatorname{lde}_{\sqrt{2}}(U)$.

Proof Sketch. Since \bar{U} is row-paired, there exists $P \in S_{n}$ such that

$$
P U=\frac{1}{\sqrt{2}^{k}}\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{n}
\end{array}\right], r_{1} \equiv r_{2}(2), \ldots, r_{n-1} \equiv r_{n}(2) .
$$

When the Binary Pattern is NICE

Lemma (Row-Paired Reduction)

Let n be even, $U \in \mathcal{L}_{n}$ with lde $_{\sqrt{2}}(U)=k$. If \bar{U} is row-paired, there exists $P \in S_{n}$ such that $\operatorname{lde}_{\sqrt{2}}(((I \otimes H) P) U)<\operatorname{lde}_{\sqrt{2}}(U)$.

Proof Sketch. Since \bar{U} is row-paired, there exists $P \in S_{n}$ such that

$$
P U=\frac{1}{\sqrt{2}^{k}}\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{n}
\end{array}\right], r_{1} \equiv r_{2}(2), \ldots, r_{n-1} \equiv r_{n}(2) . H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \text { and } I \otimes H=\left[\begin{array}{c|c|c}
H & \mathbf{0} & \mathbf{0} \\
\hline \mathbf{0} & \ddots & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{0} & H
\end{array}\right]
$$

implies that $(I \otimes H) P U=\frac{1}{\sqrt{2}^{k+1}}\left[\begin{array}{c}r_{1}+r_{2} \\ r_{1}-r_{2} \\ \vdots \\ r_{n-1}-r_{n}\end{array}\right]=\frac{2}{\sqrt{2}^{k+1}}\left[\begin{array}{c}t_{1} \\ t_{2} \\ \vdots \\ t_{n}\end{array}\right]=\frac{1}{\sqrt{2}^{k-1}}\left[\begin{array}{c}t_{1} \\ t_{2} \\ \vdots \\ t_{n}\end{array}\right], t_{1}, t_{2}, \ldots, t_{n} \in \mathbb{Z}$.

Global Synthesis for \mathcal{L}_{8}

Lemma (When the Binary Pattern is NOT NICE)

Let $U \in \mathcal{L}_{8}$ with lde $_{\sqrt{2}}(U)=k$. If \bar{U} is neither row-paired nor column-paired, $\overline{(I \otimes H) U(I \otimes H)}$ is row-paired and lde $\sqrt{2}((I \otimes H) U(I \otimes H)) \leq \operatorname{lde}_{\sqrt{2}}(U)$.

Global Synthesis for \mathcal{L}_{8}

Lemma (When the Binary Pattern is NOT NICE)

Let $U \in \mathcal{L}_{8}$ with $\operatorname{lde}_{\sqrt{2}}(U)=k$. If \bar{U} is neither row-paired nor column-paired, $\overline{(I \otimes H) U(I \otimes H)}$ is row-paired and lde $\sqrt{2}((I \otimes H) U(I \otimes H)) \leq \operatorname{lde}_{\sqrt{2}}(U)$.

Proposition

Let $U \in \mathcal{L}_{8}$ with lde ${ }_{\sqrt{2}}(U)=k$. U can be represented by $O(k)$ generators in \mathcal{F}_{8} using the global synthesis algorithm.

Global Synthesis for \mathcal{L}_{8}

Lemma (When the Binary Pattern is NOT NICE)

Let $U \in \mathcal{L}_{8}$ with lde $_{\sqrt{2}}(U)=k$. If \bar{U} is neither row-paired nor column-paired, $\overline{(I \otimes H) U(I \otimes H)}$ is row-paired and $\left.\operatorname{lde}_{\sqrt{2}}(I \otimes H) U(I \otimes H)\right) \leq \operatorname{lde}_{\sqrt{2}}(U)$.

Proposition

Let $U \in \mathcal{L}_{8}$ with lde ${ }_{\sqrt{2}}(U)=k$. U can be represented by $O(k)$ generators in \mathcal{F}_{8} using the global synthesis algorithm.

Proof Sketch. Let $U \in \mathcal{L}_{8}$, proceed by induction on k.

Global Synthesis for \mathcal{L}_{8}

Lemma (When the Binary Pattern is NOT NICE)

Let $U \in \mathcal{L}_{8}$ with lde $_{\sqrt{2}}(U)=k$. If \bar{U} is neither row-paired nor column-paired, $\overline{(I \otimes H) U(I \otimes H)}$ is row-paired and lde $\sqrt{2}((I \otimes H) U(I \otimes H)) \leq \operatorname{lde}_{\sqrt{2}}(U)$.

Proposition

Let $U \in \mathcal{L}_{8}$ with lde ${ }_{\sqrt{2}}(U)=k$. U can be represented by $O(k)$ generators in \mathcal{F}_{8} using the global synthesis algorithm.

Proof Sketch. Let $U \in \mathcal{L}_{8}$, proceed by induction on k.

Global Synthesis for \mathcal{L}_{8}

Lemma (When the Binary Pattern is NOT NICE)

Let $U \in \mathcal{L}_{8}$ with lde $_{\sqrt{2}}(U)=k$. If \bar{U} is neither row-paired nor column-paired, $\overline{(I \otimes H) U(I \otimes H)}$ is row-paired and lde $\sqrt{2}((I \otimes H) U(I \otimes H)) \leq \operatorname{lde}_{\sqrt{2}}(U)$.

Proposition

Let $U \in \mathcal{L}_{8}$ with lde ${ }_{\sqrt{2}}(U)=k$. U can be represented by $O(k)$ generators in \mathcal{F}_{8} using the global synthesis algorithm.

Proof Sketch. Let $U \in \mathcal{L}_{8}$, proceed by induction on k.

Global Synthesis for \mathcal{L}_{8}

Lemma (When the Binary Pattern is NOT NICE)

Let $U \in \mathcal{L}_{8}$ with $\operatorname{lde}_{\sqrt{2}}(U)=k$. If \bar{U} is neither row-paired nor column-paired, $\overline{(I \otimes H) U(I \otimes H)}$ is row-paired and $\left.\operatorname{lde}_{\sqrt{2}}(I \otimes H) U(I \otimes H)\right) \leq \operatorname{lde}_{\sqrt{2}}(U)$.

Proposition

Let $U \in \mathcal{L}_{8}$ with lde ${ }_{\sqrt{2}}(U)=k$. U can be represented by $O(k)$ generators in \mathcal{F}_{8} using the global synthesis algorithm.

Proof Sketch. Let $U \in \mathcal{L}_{8}$, proceed by induction on k.

Pushing Hadamard through \mathcal{G} (PHG) ${ }^{3}$

- \mathcal{L}_{n} is generated by $\mathcal{F}_{n}=\left\{(-1)_{[\alpha]}, X_{[\alpha, \beta]}, K_{[\alpha, \beta, \gamma, \delta]}, I \otimes H: 1 \leq \alpha<\beta<\gamma<\delta \leq n\right\}$.
- O_{n} is generated by $\mathcal{G}_{n}=\left\{(-1)_{[\alpha]}, X_{[\alpha, \beta]}, K_{[\alpha, \beta, \gamma, \delta]}: 1 \leq \alpha<\beta<\gamma<\delta \leq n\right\}$.

[^9]
Pushing Hadamard through \mathcal{G} (PHG) ${ }^{3}$

- \mathcal{L}_{n} is generated by $\mathcal{F}_{n}=\left\{(-1)_{[\alpha]}, X_{[\alpha, \beta]}, K_{[\alpha, \beta, \gamma, \delta]}, I \otimes H: 1 \leq \alpha<\beta<\gamma<\delta \leq n\right\}$.
- O_{n} is generated by $\mathcal{G}_{n}=\left\{(-1)_{[\alpha]}, X_{[\alpha, \beta]}, K_{[\alpha, \beta, \gamma, \delta]}: 1 \leq \alpha<\beta<\gamma<\delta \leq n\right\}$.

$$
\begin{aligned}
(I \otimes H)(I \otimes H) & =\epsilon \\
(I \otimes H)(-1)_{[a]} & =(-1)_{[a]} X_{[a, a+1]}(-1)_{[a]}(I \otimes H) \\
(I \otimes H)(-1)_{[a]} & =X_{[a-1, a]}(I \otimes H) \\
(I \otimes H) X_{[a, a+1]} & =(-1)_{[a+1]}(I \otimes H) \\
(I \otimes H) X_{[a, a+1]} & =K_{[a-1, a, a+1, a+2]} X_{[a, a+1]}(I \otimes H)
\end{aligned}
$$

[^10]
Pushing Hadamard through \mathcal{G} (PHG) ${ }^{3}$

- \mathcal{L}_{n} is generated by $\mathcal{F}_{n}=\left\{(-1)_{[\alpha]}, X_{[\alpha, \beta]}, K_{[\alpha, \beta, \gamma, \delta]}, I \otimes H: 1 \leq \alpha<\beta<\gamma<\delta \leq n\right\}$.
- O_{n} is generated by $\mathcal{G}_{n}=\left\{(-1)_{[\alpha]}, X_{[\alpha, \beta]}, K_{[\alpha, \beta, \gamma, \delta]}: 1 \leq \alpha<\beta<\gamma<\delta \leq n\right\}$.

$$
\begin{aligned}
(I \otimes H)(I \otimes H) & =\epsilon \\
(I \otimes H)(-1)_{[a]} & =(-1)_{[a]} X_{[a, a+1]}(-1)_{[a]}(I \otimes H) \\
(I \otimes H)(-1)_{[a]} & =X_{[a-1, a]}(I \otimes H) \\
(I \otimes H) X_{[a, a+1]} & =(-1)_{[a+1]}(I \otimes H) \\
(I \otimes H) X_{[a, a+1]} & =K_{[a-1, a, a+1, a+2]} X_{[a, a+1]}(I \otimes H)
\end{aligned}
$$

Intuition: Pushing $I \otimes H$ through an element in \mathcal{G}_{n} adds $O(1)$ gates.

[^11]
Global Synthesis for O_{8}

Theorem

Let $U \in O_{8}$ with $\operatorname{lde}(U)=k$. U can be represented by $O(k)$ generators in \mathcal{G}_{8} using the global synthesis algorithm.

Global Synthesis for O_{8}

Theorem

Let $U \in O_{8}$ with lde $(U)=k . U$ can be represented by $O(k)$ generators in \mathcal{G}_{8} using the global synthesis algorithm.

Proof Sketch. Since $U \in \mathcal{L}_{8}$ with lde $_{\sqrt{2}}(U)=2 k$, globally synthesizing U over \mathcal{F}_{8} yields evenly many $I \otimes H$.

Global Synthesis for O_{8}

Theorem

Let $U \in O_{8}$ with lde $(U)=k . U$ can be represented by $O(k)$ generators in \mathcal{G}_{8} using the global synthesis algorithm.

Proof Sketch. Since $U \in \mathcal{L}_{8}$ with $\operatorname{lde}_{\sqrt{2}}(U)=2 k$, globally synthesizing U over \mathcal{F}_{8} yields evenly many $I \otimes H$.

$$
U \in O_{8} \longrightarrow \begin{gathered}
\text { Global Synthesis } \\
\text { for } \mathcal{L}_{8}
\end{gathered} \longrightarrow U=\boldsymbol{C}_{1}(I \otimes H) \boldsymbol{C}_{2}(I \otimes H) \boldsymbol{C}_{3}(I \otimes H) \boldsymbol{C}_{4}(I \otimes H) \boldsymbol{C}_{5}
$$

$$
\begin{gathered}
C_{1}, C_{2}, C_{3}, C_{4}, C_{5} \text { over } G_{8} \\
\text { length }(U)=O(k)
\end{gathered}
$$

Global Synthesis for O_{8}

Theorem

Let $U \in O_{8}$ with $\operatorname{lde}(U)=k$. U can be represented by $O(k)$ generators in \mathcal{G}_{8} using the global synthesis algorithm.

Proof Sketch. Since $U \in \mathcal{L}_{8}$ with $\operatorname{lde}_{\sqrt{2}}(U)=2 k$, globally synthesizing U over \mathcal{F}_{8} yields evenly many $I \otimes H$.

Global Synthesis for O_{8}

Theorem

Let $U \in O_{8}$ with lde $(U)=k$. U can be represented by $O(k)$ generators in \mathcal{G}_{8} using the global synthesis algorithm.

Proof Sketch. Since $U \in \mathcal{L}_{8}$ with $\operatorname{lde}_{\sqrt{2}}(U)=2 k$, globally synthesizing U over \mathcal{F}_{8} yields evenly many $I \otimes H$.

Future Work

- Explore the complexity-theoretic properties of Toffoli-Hadamard circuits through the lens of MQCSP ${ }^{4}$.

[^12]
Future Work

- Explore the complexity-theoretic properties of Toffoli-Hadamard circuits through the lens of MQCSP ${ }^{4}$.
- Manifest the advantage of our global synthesis algorithm by scaling it up.

[^13]
Future Work

- Explore the complexity-theoretic properties of Toffoli-Hadamard circuits through the lens of MQCSP ${ }^{4}$.
- Manifest the advantage of our global synthesis algorithm by scaling it up.
- Present the global synthesis results of O_{n} and \mathcal{L}_{n} using $\{X, C X, C C X, K\}$ and $\{X, C X, C C X, H\}$ directly.

[^14]
Future Work

- Explore the complexity-theoretic properties of Toffoli-Hadamard circuits through the lens of MQCSP ${ }^{4}$.
- Manifest the advantage of our global synthesis algorithm by scaling it up.
- Present the global synthesis results of O_{n} and \mathcal{L}_{n} using $\{X, C X, C C X, K\}$ and $\{X, C X, C C X, H\}$ directly.
- Design a standalone global synthesis for O_{8}, rather than relying on the corresponding result for \mathcal{L}_{8} and the commutation of generators.

[^15]

[^0]: ${ }^{1}$ Amy, M., Glaudell, A. N., \& Ross, N. J. (2020). Number-theoretic characterizations of some restricted Clifford+T circuits. Quantum, 4, 252.

[^1]: [0] Amy, M., Glaudell, A. N., \& Ross, N. J. (2020). Number-theoretic characterizations of some restricted Clifford+ T circuits. Quantum, 4, 252.

[^2]: ${ }^{1}$ Amy, M., Glaudell, A. N., \& Ross, N. J. (2020). Number-theoretic characterizations of some restricted Clifford+T circuits. Quantum, 4, 252.

[^3]: ${ }^{1}$ Amy, M., Glaudell, A. N., \& Ross, N. J. (2020). Number-theoretic characterizations of some restricted Clifford+T circuits. Quantum, 4, 252.

[^4]: ${ }^{1}$ Amy, M., Glaudell, A. N., \& Ross, N. J. (2020). Number-theoretic characterizations of some restricted Clifford+T circuits. Quantum, 4, 252.

[^5]: ${ }^{1}$ Amy, M., Glaudell, A. N., \& Ross, N. J. (2020). Number-theoretic characterizations of some restricted Clifford+T circuits. Quantum, 4, 252.

[^6]: ${ }^{2}$ Vadym Kliuchnikov (2013). "Synthesis of unitaries with Clifford+ T circuits". In: arXiv preprint arXiv:1306.3200.

[^7]: ${ }^{2}$ Vadym Kliuchnikov (2013). "Synthesis of unitaries with Clifford+ T circuits". In: arXiv preprint arXiv:1306.3200.

[^8]: ${ }^{2}$ Vadym Kliuchnikov (2013). "Synthesis of unitaries with Clifford+ T circuits". In: arXiv preprint arXiv:1306.3200.

[^9]: ${ }^{3}$ Sarah Meng Li, Neil J Ross, and Peter Selinger (2021). "Generators and relations for the group $O_{n}(\mathbb{Z}[1 / 2])$ ". In: arXiv preprint arXiv:2106.01175.

[^10]: ${ }^{3}$ Sarah Meng Li, Neil J Ross, and Peter Selinger (2021). "Generators and relations for the group $O_{n}(\mathbb{Z}[1 / 2])$ ". In: arXiv preprint arXiv:2106.01175.

[^11]: ${ }^{3}$ Sarah Meng Li, Neil J Ross, and Peter Selinger (2021). "Generators and relations for the group $O_{n}(\mathbb{Z}[1 / 2])$ ". In: arXiv preprint arXiv:2106.01775.

[^12]: ${ }^{4}$ Nai-Hui Chia et al. (2021). "Quantum meets the minimum circuit size problem". In: arXiv preprint arXiv:2108.03171.

[^13]: ${ }^{4}$ Nai-Hui Chia et al. (2021). "Quantum meets the minimum circuit size problem". In: arXiv preprint arXiv:2108.03171.

[^14]: ${ }^{4}$ Nai-Hui Chia et al. (2021). "Quantum meets the minimum circuit size problem". In: arXiv preprint arXiv:2108.03171.

[^15]: ${ }^{4}$ Nai-Hui Chia et al. (2021). "Quantum meets the minimum circuit size problem". In: arXiv preprint arXiv:2108.03171.

