
Improved Synthesis of 
Toffoli-Hadamard Circuits

Matthew Amy1, Andrew N. Glaudell2, Sarah Meng Li3,4, Neil J. Ross5

[1] School of Computing Science, Simon Fraser University
[2] Photonic Inc.
[3] Institute for Quantum Computing, University of Waterloo
[4] Department of Combinatorics and Optimization, University of Waterloo
[5] Department of Mathematics and Statistics, Dalhousie University

Gabriel Tovar Paper on arXiv



𝐻 • 𝐻 •
𝑋 • 𝑋 𝐻 𝑋 • 𝑋

𝐻 • 𝑋 • • 𝑋 •
𝐻 𝑋

A Toffoli-Hadamard Circuit

•
𝐾

•
𝑋 • 𝑋 𝑋 • 𝑋

𝐾
• 𝑋 • • 𝑋 •
𝑋

A Toffoli-K Circuit
1Amy, M., Glaudell, A. N., & Ross, N. J. (2020). Number-theoretic characterizations of some restricted Clifford+T

circuits. Quantum, 4, 252.
1

Restricted Clifford+T Circuits1



(−1) = [−1]

𝐻 =
1
√
2

[
1 1
1 −1

]
, 𝐾 = 𝐻 ⊗ 𝐻 =

1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


𝑋 =

[
0 1

1 0

]
, 𝐶𝑋 =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


=

[
𝐼2 0

0 𝑋

]
, 𝐶𝐶𝑋 =

[
𝐼6 0

0 𝑋

]

2

Basic Gates



• A family of quantum circuits ⇐⇒ A group of matrices.

• Studying matrix groups is a way to study quantum circuits.

• For the matrix group associated with the Toffoli-Hadamard circuits, use a
convenient set of generators and study the factorization of group
elements into a sequence of these generators.
⇒ The exact synthesis algorithm

• A factorization is optimal if the sequence is a shortest possible sequence.

• Each generator can be expressed as a short circuit.
⇒ A good solution to this factorization problem yields a good synthesis.

3

Our Motivations



• A family of quantum circuits ⇐⇒ A group of matrices.

• Studying matrix groups is a way to study quantum circuits.

• For the matrix group associated with the Toffoli-Hadamard circuits, use a
convenient set of generators and study the factorization of group
elements into a sequence of these generators.
⇒ The exact synthesis algorithm

• A factorization is optimal if the sequence is a shortest possible sequence.

• Each generator can be expressed as a short circuit.
⇒ A good solution to this factorization problem yields a good synthesis.

3

Our Motivations



• A family of quantum circuits ⇐⇒ A group of matrices.

• Studying matrix groups is a way to study quantum circuits.

• For the matrix group associated with the Toffoli-Hadamard circuits, use a
convenient set of generators and study the factorization of group
elements into a sequence of these generators.

⇒ The exact synthesis algorithm

• A factorization is optimal if the sequence is a shortest possible sequence.

• Each generator can be expressed as a short circuit.
⇒ A good solution to this factorization problem yields a good synthesis.

3

Our Motivations



• A family of quantum circuits ⇐⇒ A group of matrices.

• Studying matrix groups is a way to study quantum circuits.

• For the matrix group associated with the Toffoli-Hadamard circuits, use a
convenient set of generators and study the factorization of group
elements into a sequence of these generators.
⇒ The exact synthesis algorithm

• A factorization is optimal if the sequence is a shortest possible sequence.

• Each generator can be expressed as a short circuit.
⇒ A good solution to this factorization problem yields a good synthesis.

3

Our Motivations



• A family of quantum circuits ⇐⇒ A group of matrices.

• Studying matrix groups is a way to study quantum circuits.

• For the matrix group associated with the Toffoli-Hadamard circuits, use a
convenient set of generators and study the factorization of group
elements into a sequence of these generators.
⇒ The exact synthesis algorithm

• A factorization is optimal if the sequence is a shortest possible sequence.

• Each generator can be expressed as a short circuit.
⇒ A good solution to this factorization problem yields a good synthesis.

3

Our Motivations



• A family of quantum circuits ⇐⇒ A group of matrices.

• Studying matrix groups is a way to study quantum circuits.

• For the matrix group associated with the Toffoli-Hadamard circuits, use a
convenient set of generators and study the factorization of group
elements into a sequence of these generators.
⇒ The exact synthesis algorithm

• A factorization is optimal if the sequence is a shortest possible sequence.

• Each generator can be expressed as a short circuit.

⇒ A good solution to this factorization problem yields a good synthesis.

3

Our Motivations



• A family of quantum circuits ⇐⇒ A group of matrices.

• Studying matrix groups is a way to study quantum circuits.

• For the matrix group associated with the Toffoli-Hadamard circuits, use a
convenient set of generators and study the factorization of group
elements into a sequence of these generators.
⇒ The exact synthesis algorithm

• A factorization is optimal if the sequence is a shortest possible sequence.

• Each generator can be expressed as a short circuit.
⇒ A good solution to this factorization problem yields a good synthesis.

3

Our Motivations



4

Our Results



4

Our Results



4

Our Results



• Z
[
1
2

]
=
{
𝑢
2𝑞 |𝑢 ∈ Z, 𝑞 ∈ N

}
is the ring of dyadic fractions.

• O𝑛
(
Z
[
1
2

] )
is the group of orthogonal dyadic matrices, which consists of

𝑛 × 𝑛 orthogonal matrices of the form 𝑀/2𝑘 , where 𝑀 is an integer matrix
and 𝑘 is a nonnegative integer. For short, we denote it as O𝑛.

Example: 𝑈 ∈ O5

𝑈 =


3/4 1/4 −1/4 1/4 1/2
1/4 3/4 1/4 −1/4 −1/2

−1/4 1/4 3/4 1/4 1/2
1/4 −1/4 1/4 3/4 −1/2

−1/2 1/2 −1/2 1/2 0



5

Orthogonal Dyadic Matrices



• Z
[
1
2

]
=
{
𝑢
2𝑞 |𝑢 ∈ Z, 𝑞 ∈ N

}
is the ring of dyadic fractions.

• O𝑛
(
Z
[
1
2

] )
is the group of orthogonal dyadic matrices, which consists of

𝑛 × 𝑛 orthogonal matrices of the form 𝑀/2𝑘 , where 𝑀 is an integer matrix
and 𝑘 is a nonnegative integer. For short, we denote it as O𝑛.

Example: 𝑈 ∈ O5

𝑈 =


3/4 1/4 −1/4 1/4 1/2
1/4 3/4 1/4 −1/4 −1/2

−1/4 1/4 3/4 1/4 1/2
1/4 −1/4 1/4 3/4 −1/2

−1/2 1/2 −1/2 1/2 0



5

Orthogonal Dyadic Matrices



• Z
[
1
2

]
=
{
𝑢
2𝑞 |𝑢 ∈ Z, 𝑞 ∈ N

}
is the ring of dyadic fractions.

• O𝑛
(
Z
[
1
2

] )
is the group of orthogonal dyadic matrices, which consists of

𝑛 × 𝑛 orthogonal matrices of the form 𝑀/2𝑘 , where 𝑀 is an integer matrix
and 𝑘 is a nonnegative integer. For short, we denote it as O𝑛.

Example: 𝑈 ∈ O5

𝑈 =


3/4 1/4 −1/4 1/4 1/2
1/4 3/4 1/4 −1/4 −1/2

−1/4 1/4 3/4 1/4 1/2
1/4 −1/4 1/4 3/4 −1/2

−1/2 1/2 −1/2 1/2 0


5

Orthogonal Dyadic Matrices



• Z
[
1
2

]
=
{
𝑢
2𝑞 |𝑢 ∈ Z, 𝑞 ∈ N

}
is the ring of dyadic fractions.

• O𝑛
(
Z
[
1
2

] )
is the group of orthogonal dyadic matrices, which consists of

𝑛 × 𝑛 orthogonal matrices of the form 𝑀/2𝑘 , where 𝑀 is an integer matrix
and 𝑘 is a nonnegative integer. For short, we denote it as O𝑛.

Example: 𝑈 ∈ O5

𝑈 =


3/4 1/4 −1/4 1/4 1/2
1/4 3/4 1/4 −1/4 −1/2

−1/4 1/4 3/4 1/4 1/2
1/4 −1/4 1/4 3/4 −1/2

−1/2 1/2 −1/2 1/2 0


5

Orthogonal Dyadic Matrices



• Z
[
1
2

]
=
{
𝑢
2𝑞 |𝑢 ∈ Z, 𝑞 ∈ N

}
is the ring of dyadic fractions.

• O𝑛
(
Z
[
1
2

] )
is the group of orthogonal dyadic matrices, which consists of

𝑛 × 𝑛 orthogonal matrices of the form 𝑀/2𝑘 , where 𝑀 is an integer matrix
and 𝑘 is a nonnegative integer. For short, we denote it as O𝑛.

Example: 𝑈 ∈ O5

𝑈 =
1

22


3 1 −1 1 2
1 3 1 −1 −2

−1 1 3 1 2
1 −1 1 3 −2

−2 2 −2 2 0


5

Orthogonal Dyadic Matrices



Theorem (The AGR Algorithm1)

For an n-dimensional orthogonal matrix 𝑈, it can be exactly represented by a
circuit over {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐾} iff 𝑈 ∈ O𝑛.

G𝑛 =
{
(−1)[𝛼] , 𝑋[𝛼,𝛽 ] , 𝐾[𝛼,𝛽,𝛾, 𝛿 ] : 1 ≤ 𝛼 < 𝛽 < 𝛾 < 𝛿 ≤ 𝑛

}
.

• When 𝑛 = 2𝑚, every operator in G𝑛 can be exactly represented by 𝑂 (log(𝑛))
operators in {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐾}.

Theorem (The AGR Algorithm)

For an n-dimensional orthogonal matrix 𝑈, it can be written as a product of
elements of G𝑛 iff 𝑈 ∈ O𝑛.

1Amy, M., Glaudell, A. N., & Ross, N. J. (2020). Number-theoretic characterizations of some
restricted Clifford+T circuits. Quantum, 4, 252.

6

The Circuit-Matrix Correspondence I



Theorem (The AGR Algorithm1)

For an n-dimensional orthogonal matrix 𝑈, it can be exactly represented by a
circuit over {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐾} iff 𝑈 ∈ O𝑛.

G𝑛 =
{
(−1)[𝛼] , 𝑋[𝛼,𝛽 ] , 𝐾[𝛼,𝛽,𝛾, 𝛿 ] : 1 ≤ 𝛼 < 𝛽 < 𝛾 < 𝛿 ≤ 𝑛

}
.

• When 𝑛 = 2𝑚, every operator in G𝑛 can be exactly represented by 𝑂 (log(𝑛))
operators in {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐾}.

Theorem (The AGR Algorithm)

For an n-dimensional orthogonal matrix 𝑈, it can be written as a product of
elements of G𝑛 iff 𝑈 ∈ O𝑛.

1Amy, M., Glaudell, A. N., & Ross, N. J. (2020). Number-theoretic characterizations of some
restricted Clifford+T circuits. Quantum, 4, 252.

6

The Circuit-Matrix Correspondence I



Theorem (The AGR Algorithm1)

For an n-dimensional orthogonal matrix 𝑈, it can be exactly represented by a
circuit over {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐾} iff 𝑈 ∈ O𝑛.

G𝑛 =
{
(−1)[𝛼] , 𝑋[𝛼,𝛽 ] , 𝐾[𝛼,𝛽,𝛾, 𝛿 ] : 1 ≤ 𝛼 < 𝛽 < 𝛾 < 𝛿 ≤ 𝑛

}
.

• When 𝑛 = 2𝑚, every operator in G𝑛 can be exactly represented by 𝑂 (log(𝑛))
operators in {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐾}.

Theorem (The AGR Algorithm)

For an n-dimensional orthogonal matrix 𝑈, it can be written as a product of
elements of G𝑛 iff 𝑈 ∈ O𝑛.

1Amy, M., Glaudell, A. N., & Ross, N. J. (2020). Number-theoretic characterizations of some
restricted Clifford+T circuits. Quantum, 4, 252.

6

The Circuit-Matrix Correspondence I



Theorem (The AGR Algorithm1)

For an n-dimensional orthogonal matrix 𝑈, it can be exactly represented by a
circuit over {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐾} iff 𝑈 ∈ O𝑛.

G𝑛 =
{
(−1)[𝛼] , 𝑋[𝛼,𝛽 ] , 𝐾[𝛼,𝛽,𝛾, 𝛿 ] : 1 ≤ 𝛼 < 𝛽 < 𝛾 < 𝛿 ≤ 𝑛

}
.

• When 𝑛 = 2𝑚, every operator in G𝑛 can be exactly represented by 𝑂 (log(𝑛))
operators in {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐾}.

Theorem (The AGR Algorithm)

For an n-dimensional orthogonal matrix 𝑈, it can be written as a product of
elements of G𝑛 iff 𝑈 ∈ O𝑛.

1Amy, M., Glaudell, A. N., & Ross, N. J. (2020). Number-theoretic characterizations of some
restricted Clifford+T circuits. Quantum, 4, 252.

6

The Circuit-Matrix Correspondence I



Definition

Let 𝑈 =

[
𝑥1,1 𝑥1,2
𝑥2,1 𝑥2,2

]
. The action of 𝑈[𝛼,𝛽 ] , 1 ≤ 𝛼 < 𝛽 ≤ 𝑛, is defined as

𝑈[𝛼,𝛽 ]𝑣 = 𝑤, where

[
𝑤𝛼
𝑤𝛽

]
= 𝑈

[
𝑣𝛼
𝑣𝛽

]
,

𝑤𝑖 = 𝑣𝑖 , 𝑖 ∉ {𝛼, 𝛽}.

Example:

Let 𝑋 =

[
0 1
1 0

]
. Then 𝑋[2,3] =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 and 𝑋[2,3]


𝑣1
𝑣2
𝑣3
𝑣4

 =

𝑣1
𝑣3
𝑣2
𝑣4

 .
7

The Two-Level Operator: 𝑈[𝛼,𝛽]



Similarly, we can create a four-level operator by embedding a 4 × 4 matrix U
into an 𝑛 × 𝑛 identity matrix.

Let 𝐾 =
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 . Then 𝐾[1,2,4,6] =



1/2 1/2 0 1/2 0 1/2
1/2 −1/2 0 1/2 0 −1/2
0 0 1 0 0 0
1/2 1/2 0 −1/2 0 −1/2
0 0 0 0 1 0
1/2 −1/2 0 −1/2 0 1/2


.

𝐾[1,2,4,6]



𝑣1
𝑣2
𝑣3
𝑣4
𝑣5
𝑣6


=



(𝑣1 + 𝑣2 + 𝑣4 + 𝑣6)/2
(𝑣1 − 𝑣2 + 𝑣4 − 𝑣6)/2

𝑣3
(𝑣1 + 𝑣2 − 𝑣4 − 𝑣6)/2

𝑣5
(𝑣1 − 𝑣2 − 𝑣4 + 𝑣6)/2


.

8

The Four-Level Operator: 𝑈[𝛼,𝛽,𝛾,𝛿]



• The algorithm proceeds one column at a time, reducing each column to a
corresponding basis vector.

• While outputting a word
−→
𝐺ℓ after each iteration, the algorithm recursively

acts on the input matrix until it is reduced to the identity matrix I.

𝑀

−→
𝐺1−−→

©­­­­«
0

𝑀 ′ ...

0
0 · · · 0 1

ª®®®®¬
−→
𝐺2−−→

©­­­­­­«

0 0

𝑀 ′′ ...
...

0 0
0 · · · 0 1 0
0 · · · 0 0 1

ª®®®®®®¬
−→
𝐺3−−→ · · ·

−→
𝐺ℓ−−→ I

−→
𝐺ℓ · · · · ·

−→
𝐺1𝑀 = I⇒ 𝑀 =

−→
𝐺1

−1 · · · · · −→𝐺ℓ−1

9

The AGR Algorithm



• The algorithm proceeds one column at a time, reducing each column to a
corresponding basis vector.

• While outputting a word
−→
𝐺ℓ after each iteration, the algorithm recursively

acts on the input matrix until it is reduced to the identity matrix I.

𝑀

−→
𝐺1−−→

©­­­­«
0

𝑀 ′ ...

0
0 · · · 0 1

ª®®®®¬
−→
𝐺2−−→

©­­­­­­«

0 0

𝑀 ′′ ...
...

0 0
0 · · · 0 1 0
0 · · · 0 0 1

ª®®®®®®¬
−→
𝐺3−−→ · · ·

−→
𝐺ℓ−−→ I

en

−→
𝐺ℓ · · · · ·

−→
𝐺1𝑀 = I⇒ 𝑀 =

−→
𝐺1

−1 · · · · · −→𝐺ℓ−1

9

The AGR Algorithm



• The algorithm proceeds one column at a time, reducing each column to a
corresponding basis vector.

• While outputting a word
−→
𝐺ℓ after each iteration, the algorithm recursively

acts on the input matrix until it is reduced to the identity matrix I.

𝑀

−→
𝐺1−−→

©­­­­«
0

𝑀 ′ ...

0
0 · · · 0 1

ª®®®®¬
−→
𝐺2−−→

©­­­­­­«

0 0

𝑀 ′′ ...
...

0 0
0 · · · 0 1 0
0 · · · 0 0 1

ª®®®®®®¬
−→
𝐺3−−→ · · ·

−→
𝐺ℓ−−→ I

en en−1
−→
𝐺ℓ · · · · ·

−→
𝐺1𝑀 = I⇒ 𝑀 =

−→
𝐺1

−1 · · · · · −→𝐺ℓ−1

9

The AGR Algorithm



Let 𝑡 ∈ Z
[
1
2

]
. 𝑡 = 𝑎

2𝑘
, where 𝑎 ∈ Z and 𝑘 ∈ N. 𝑘 is a denominator exponent for 𝑡. The

minimal such 𝑘 is called the least denominator exponent of 𝑡, written lde(𝑡).

Example: lde(𝑣) = 6

𝑣 =
1

27



54
62
98
2
2
2
2
2


=

2

27



27
31
49
1
1
1
1
1


=

1

26



27
31
49
1
1
1
1
1


10

The Least Denominator Exponent (LDE)



Let 𝑡 ∈ Z
[
1
2

]
. 𝑡 = 𝑎

2𝑘
, where 𝑎 ∈ Z and 𝑘 ∈ N. 𝑘 is a denominator exponent for 𝑡. The

minimal such 𝑘 is called the least denominator exponent of 𝑡, written lde(𝑡).

Example: lde(𝑣) = 6

𝑣 =
1

27



54
62
98
2
2
2
2
2


=

2

27



27
31
49
1
1
1
1
1


=

1

26



27
31
49
1
1
1
1
1


10

The Least Denominator Exponent (LDE)



Let 𝑡 ∈ Z
[
1
2

]
. 𝑡 = 𝑎

2𝑘
, where 𝑎 ∈ Z and 𝑘 ∈ N. 𝑘 is a denominator exponent for 𝑡. The

minimal such 𝑘 is called the least denominator exponent of 𝑡, written lde(𝑡).

Example: lde(𝑣) = 6

𝑣 =
1

27



54
62
98
2
2
2
2
2


=

2

27



27
31
49
1
1
1
1
1


=

1

26



27
31
49
1
1
1
1
1


10

The Least Denominator Exponent (LDE)



Let 𝑡 ∈ Z
[
1
2

]
. 𝑡 = 𝑎

2𝑘
, where 𝑎 ∈ Z and 𝑘 ∈ N. 𝑘 is a denominator exponent for 𝑡. The

minimal such 𝑘 is called the least denominator exponent of 𝑡, written lde(𝑡).

Example: LDE of a column vector

𝑣 =
1

27



54
62
98
2
2
2
2
2


=

2

27



27
31
49
1
1
1
1
1


=

1

26



27
31
49
1
1
1
1
1


lde(𝑣) = 6

Example: LDE of a matrix

𝑈 =
1

2



−1 1 1 0 1 0 0 0
−1 −1 0 1 0 1 0 0
−1 1 −1 0 −1 0 0 0
−1 −1 0 −1 0 −1 0 0
0 0 1 1 −1 −1 0 0
0 0 1 −1 −1 1 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2


lde(𝑈) = 1

10

The Least Denominator Exponent (LDE)



Lemma (Base Case)

Let 𝑣 ∈ Z
[
1
2

]𝑛 be a unit vector with lde(𝑣) = 𝑘 . If 𝑘 = 0, 𝑣 = ±𝑒 𝑗 for some 𝑗 ∈ {1, . . . , 𝑛}.

Lemma (Weight)

Let 𝑣 ∈ Z
[
1
2

]𝑛 be a unit vector with lde(𝑣) = 𝑘 . Let 𝑤 = 2𝑘𝑣. If 𝑘 > 0, the number of
odd entries in 𝑤 is a multiple of 4.

Lemma (Parity Reduction)

Let 𝑢1, 𝑢2, 𝑢3, 𝑢4 be odd integers. Then there exist 𝜏1, 𝜏2, 𝜏3, 𝜏4 ∈ Z2 such that

𝐾[1,2,3,4] (−1)𝜏1[1] (−1)
𝜏2
[2] (−1)

𝜏3
[3] (−1)

𝜏4
[4]


𝑢1
𝑢2
𝑢3
𝑢4

 =

𝑢′1
𝑢′2
𝑢′3
𝑢′4

 , 𝑢
′
1, 𝑢

′
2, 𝑢

′
3, 𝑢

′
4 are even integers.

11



Lemma (Base Case)

Let 𝑣 ∈ Z
[
1
2

]𝑛 be a unit vector with lde(𝑣) = 𝑘 . If 𝑘 = 0, 𝑣 = ±𝑒 𝑗 for some 𝑗 ∈ {1, . . . , 𝑛}.

Lemma (Weight)

Let 𝑣 ∈ Z
[
1
2

]𝑛 be a unit vector with lde(𝑣) = 𝑘 . Let 𝑤 = 2𝑘𝑣. If 𝑘 > 0, the number of
odd entries in 𝑤 is a multiple of 4.

Lemma (Parity Reduction)

Let 𝑢1, 𝑢2, 𝑢3, 𝑢4 be odd integers. Then there exist 𝜏1, 𝜏2, 𝜏3, 𝜏4 ∈ Z2 such that

𝐾[1,2,3,4] (−1)𝜏1[1] (−1)
𝜏2
[2] (−1)

𝜏3
[3] (−1)

𝜏4
[4]


𝑢1
𝑢2
𝑢3
𝑢4

 =

𝑢′1
𝑢′2
𝑢′3
𝑢′4

 , 𝑢
′
1, 𝑢

′
2, 𝑢

′
3, 𝑢

′
4 are even integers.

11



Lemma (Base Case)

Let 𝑣 ∈ Z
[
1
2

]𝑛 be a unit vector with lde(𝑣) = 𝑘 . If 𝑘 = 0, 𝑣 = ±𝑒 𝑗 for some 𝑗 ∈ {1, . . . , 𝑛}.

Lemma (Weight)

Let 𝑣 ∈ Z
[
1
2

]𝑛 be a unit vector with lde(𝑣) = 𝑘 . Let 𝑤 = 2𝑘𝑣. If 𝑘 > 0, the number of
odd entries in 𝑤 is a multiple of 4.

Lemma (Parity Reduction)

Let 𝑢1, 𝑢2, 𝑢3, 𝑢4 be odd integers. Then there exist 𝜏1, 𝜏2, 𝜏3, 𝜏4 ∈ Z2 such that

𝐾[1,2,3,4] (−1)𝜏1[1] (−1)
𝜏2
[2] (−1)

𝜏3
[3] (−1)

𝜏4
[4]


𝑢1
𝑢2
𝑢3
𝑢4

 =

𝑢′1
𝑢′2
𝑢′3
𝑢′4

 , 𝑢
′
1, 𝑢

′
2, 𝑢

′
3, 𝑢

′
4 are even integers.

11



Example: Input: 𝑣 ∈ Z
[
1
2

]8 Output: 𝐺1, 𝐺2, 𝐺3 Result: 𝐺3 · 𝐺2 · 𝐺1 · 𝑣 = 𝑒1

𝑣 :
1

4

©­­­­­­­­­­­­­«

−1
1

−1
−1
3

1

1

1

ª®®®®®®®®®®®®®¬
lde(𝑣) = 2

𝐺1=𝐾[1,2,3,4] (−1) [4] (−1) [3] (−1) [1]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝑣′ :

1

4

©­­­­­­­­­­­­­«

2

0

0

0

3

1

1

1

ª®®®®®®®®®®®®®¬
lde(𝑣′ ) = 2

𝐺2=𝐾[5,6,7,8] (−1) [5]
−−−−−−−−−−−−−−−−−→

𝑣′′ :
1

4

©­­­­­­­­­­­­­«

2

0

0

0

0

−2
−2
−2

ª®®®®®®®®®®®®®¬
=

1

2

©­­­­­­­­­­­­­«

1

0

0

0

0

−1
−1
−1

ª®®®®®®®®®®®®®¬
lde(𝑣′′ ) = 1

𝐺3=𝐾[1,6,7,8] (−1) [8] (−1) [7] (−1) [6]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝑣′′′ :

1

2

©­­­­­­­­­­­­­«

2

0

0

0

0

0

0

0

ª®®®®®®®®®®®®®¬
=

©­­­­­­­­­­­­­«

1

0

0

0

0

0

0

0

ª®®®®®®®®®®®®®¬
= 𝑒1

lde(𝑣′′′ ) = 0

.

12

Example: The Column Reduction



Example: Input: 𝑣 ∈ Z
[
1
2

]8 Output: 𝐺1, 𝐺2, 𝐺3 Result: 𝐺3 · 𝐺2 · 𝐺1 · 𝑣 = 𝑒1

𝑣 :
1

4

©­­­­­­­­­­­­­«

−1
1

−1
−1
3

1

1

1

ª®®®®®®®®®®®®®¬
lde(𝑣) = 2

𝐺1=𝐾[1,2,3,4] (−1) [4] (−1) [3] (−1) [1]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝑣′ :

1

4

©­­­­­­­­­­­­­«

2

0

0

0

3

1

1

1

ª®®®®®®®®®®®®®¬
lde(𝑣′ ) = 2

𝐺2=𝐾[5,6,7,8] (−1) [5]
−−−−−−−−−−−−−−−−−→

𝑣′′ :
1

4

©­­­­­­­­­­­­­«

2

0

0

0

0

−2
−2
−2

ª®®®®®®®®®®®®®¬
=

1

2

©­­­­­­­­­­­­­«

1

0

0

0

0

−1
−1
−1

ª®®®®®®®®®®®®®¬
lde(𝑣′′ ) = 1

𝐺3=𝐾[1,6,7,8] (−1) [8] (−1) [7] (−1) [6]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝑣′′′ :

1

2

©­­­­­­­­­­­­­«

2

0

0

0

0

0

0

0

ª®®®®®®®®®®®®®¬
=

©­­­­­­­­­­­­­«

1

0

0

0

0

0

0

0

ª®®®®®®®®®®®®®¬
= 𝑒1

lde(𝑣′′′ ) = 0

.

12

Example: The Column Reduction



Example: Input: 𝑣 ∈ Z
[
1
2

]8 Output: 𝐺1, 𝐺2, 𝐺3 Result: 𝐺3 · 𝐺2 · 𝐺1 · 𝑣 = 𝑒1

𝑣 :
1

4

©­­­­­­­­­­­­­«

−1
1

−1
−1
3

1

1

1

ª®®®®®®®®®®®®®¬
lde(𝑣) = 2

𝐺1=𝐾[1,2,3,4] (−1) [4] (−1) [3] (−1) [1]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝑣′ :

1

4

©­­­­­­­­­­­­­«

2

0

0

0

3

1

1

1

ª®®®®®®®®®®®®®¬
lde(𝑣′ ) = 2

𝐺2=𝐾[5,6,7,8] (−1) [5]
−−−−−−−−−−−−−−−−−→

𝑣′′ :
1

4

©­­­­­­­­­­­­­«

2

0

0

0

0

−2
−2
−2

ª®®®®®®®®®®®®®¬
=

1

2

©­­­­­­­­­­­­­«

1

0

0

0

0

−1
−1
−1

ª®®®®®®®®®®®®®¬
lde(𝑣′′ ) = 1

𝐺3=𝐾[1,6,7,8] (−1) [8] (−1) [7] (−1) [6]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝑣′′′ :

1

2

©­­­­­­­­­­­­­«

2

0

0

0

0

0

0

0

ª®®®®®®®®®®®®®¬
=

©­­­­­­­­­­­­­«

1

0

0

0

0

0

0

0

ª®®®®®®®®®®®®®¬
= 𝑒1

lde(𝑣′′′ ) = 0

.

12

Example: The Column Reduction



Example: Input: 𝑣 ∈ Z
[
1
2

]8 Output: 𝐺1, 𝐺2, 𝐺3 Result: 𝐺3 · 𝐺2 · 𝐺1 · 𝑣 = 𝑒1

𝑣 :
1

4

©­­­­­­­­­­­­­«

−1
1

−1
−1
3

1

1

1

ª®®®®®®®®®®®®®¬
lde(𝑣) = 2

𝐺1=𝐾[1,2,3,4] (−1) [4] (−1) [3] (−1) [1]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝑣′ :

1

4

©­­­­­­­­­­­­­«

2

0

0

0

3

1

1

1

ª®®®®®®®®®®®®®¬
lde(𝑣′ ) = 2

𝐺2=𝐾[5,6,7,8] (−1) [5]
−−−−−−−−−−−−−−−−−→

𝑣′′ :
1

4

©­­­­­­­­­­­­­«

2

0

0

0

0

−2
−2
−2

ª®®®®®®®®®®®®®¬
=

1

2

©­­­­­­­­­­­­­«

1

0

0

0

0

−1
−1
−1

ª®®®®®®®®®®®®®¬
lde(𝑣′′ ) = 1

𝐺3=𝐾[1,6,7,8] (−1) [8] (−1) [7] (−1) [6]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝑣′′′ :

1

2

©­­­­­­­­­­­­­«

2

0

0

0

0

0

0

0

ª®®®®®®®®®®®®®¬
=

©­­­­­­­­­­­­­«

1

0

0

0

0

0

0

0

ª®®®®®®®®®®®®®¬
= 𝑒1

lde(𝑣′′′ ) = 0

.

12

Example: The Column Reduction



Theorem
Let 𝑈 ∈ O𝑛 with lde(𝑈) = 𝑘 . 𝑈 can be exactly represented by 𝑂 (2𝑛𝑘) generators
over G𝑛.

Proof Sketch.

• Each row operation may increase the lde of any column in U by 1.
• During reduction, the lde of any other column may increase up to 2𝑘 .

𝑓u1 = 𝑂 (𝑛𝑘) , 𝑓u2 = 𝑂 ((𝑛 − 1)2𝑘) , 𝑓u3 = 𝑂
(
(𝑛 − 2)22𝑘

)
, . . . , 𝑓u𝑛 = 𝑂

(
2𝑛−1𝑘

)
.

𝑆𝑛 =

𝑛∑︁
𝑖=1

𝑓u𝑖 =

𝑛∑︁
𝑖=1

(𝑛 − 𝑖 + 1)2𝑖−1𝑘 = 𝑂 (2𝑛𝑘).

□

13

Gate Complexity of the AGR Algorithm



Theorem
Let 𝑈 ∈ O𝑛 with lde(𝑈) = 𝑘 . 𝑈 can be exactly represented by 𝑂 (2𝑛𝑘) generators
over G𝑛.

Proof Sketch.

• Each row operation may increase the lde of any column in U by 1.

• During reduction, the lde of any other column may increase up to 2𝑘 .

𝑓u1 = 𝑂 (𝑛𝑘) , 𝑓u2 = 𝑂 ((𝑛 − 1)2𝑘) , 𝑓u3 = 𝑂
(
(𝑛 − 2)22𝑘

)
, . . . , 𝑓u𝑛 = 𝑂

(
2𝑛−1𝑘

)
.

𝑆𝑛 =

𝑛∑︁
𝑖=1

𝑓u𝑖 =

𝑛∑︁
𝑖=1

(𝑛 − 𝑖 + 1)2𝑖−1𝑘 = 𝑂 (2𝑛𝑘).

□

13

Gate Complexity of the AGR Algorithm



Theorem
Let 𝑈 ∈ O𝑛 with lde(𝑈) = 𝑘 . 𝑈 can be exactly represented by 𝑂 (2𝑛𝑘) generators
over G𝑛.

Proof Sketch.

• Each row operation may increase the lde of any column in U by 1.
• During reduction, the lde of any other column may increase up to 2𝑘 .

𝑓u1 = 𝑂 (𝑛𝑘) , 𝑓u2 = 𝑂 ((𝑛 − 1)2𝑘) , 𝑓u3 = 𝑂
(
(𝑛 − 2)22𝑘

)
, . . . , 𝑓u𝑛 = 𝑂

(
2𝑛−1𝑘

)
.

𝑆𝑛 =

𝑛∑︁
𝑖=1

𝑓u𝑖 =

𝑛∑︁
𝑖=1

(𝑛 − 𝑖 + 1)2𝑖−1𝑘 = 𝑂 (2𝑛𝑘).

□

13

Gate Complexity of the AGR Algorithm



Theorem
Let 𝑈 ∈ O𝑛 with lde(𝑈) = 𝑘 . 𝑈 can be exactly represented by 𝑂 (2𝑛𝑘) generators
over G𝑛.

Proof Sketch.

• Each row operation may increase the lde of any column in U by 1.
• During reduction, the lde of any other column may increase up to 2𝑘 .

𝑓u1 = 𝑂 (𝑛𝑘) , 𝑓u2 = 𝑂 ((𝑛 − 1)2𝑘) , 𝑓u3 = 𝑂
(
(𝑛 − 2)22𝑘

)
, . . . , 𝑓u𝑛 = 𝑂

(
2𝑛−1𝑘

)
.

𝑆𝑛 =

𝑛∑︁
𝑖=1

𝑓u𝑖 =

𝑛∑︁
𝑖=1

(𝑛 − 𝑖 + 1)2𝑖−1𝑘 = 𝑂 (2𝑛𝑘).

□

13

Gate Complexity of the AGR Algorithm



Theorem
Let 𝑈 ∈ O𝑛 with lde(𝑈) = 𝑘 . 𝑈 can be exactly represented by 𝑂 (2𝑛𝑘) generators
over G𝑛.

Proof Sketch.

• Each row operation may increase the lde of any column in U by 1.
• During reduction, the lde of any other column may increase up to 2𝑘 .

𝑓u1 = 𝑂 (𝑛𝑘) , 𝑓u2 = 𝑂 ((𝑛 − 1)2𝑘) , 𝑓u3 = 𝑂
(
(𝑛 − 2)22𝑘

)
, . . . , 𝑓u𝑛 = 𝑂

(
2𝑛−1𝑘

)
.

𝑆𝑛 =

𝑛∑︁
𝑖=1

𝑓u𝑖 =

𝑛∑︁
𝑖=1

(𝑛 − 𝑖 + 1)2𝑖−1𝑘 = 𝑂 (2𝑛𝑘).

□

13

Gate Complexity of the AGR Algorithm



With one ancilla, the gate complexity of exactly synthesizing O𝑛 over G𝑛 is
reduced from 𝑂 (2𝑛𝑘) to 𝑂 (𝑛2𝑘) .

Definition
Let |𝜓⟩ be an 𝑛-dimensional unit vector. The reflection operator around |𝜓⟩ is

𝑅 |𝜓⟩ = 𝐼 − 2 |𝜓⟩ ⟨𝜓 | .

• 𝑅 |𝜓⟩ = 𝑅
†
|𝜓⟩ and 𝑅2

|𝜓⟩ = (𝐼 − 2 |𝜓⟩ ⟨𝜓 |) (𝐼 − 2 |𝜓⟩ ⟨𝜓 |) = 𝐼 .

• 𝑅 |𝜓⟩ is unitary: 𝑅 |𝜓⟩𝑅
†
|𝜓⟩ = 𝑅

†
|𝜓⟩𝑅 |𝜓⟩ = 𝑅

2
|𝜓⟩ = 𝐼 .

• If |𝜓⟩ = |𝑣⟩ /2𝑘 , 𝑅 |𝜓⟩ ∈ O𝑛.

2Vadym Kliuchnikov (2013). “Synthesis of unitaries with Clifford+ T circuits”. In: arXiv preprint
arXiv:1306.3200.

14

The Householder Algorithm2



With one ancilla, the gate complexity of exactly synthesizing O𝑛 over G𝑛 is
reduced from 𝑂 (2𝑛𝑘) to 𝑂 (𝑛2𝑘) .

Definition
Let |𝜓⟩ be an 𝑛-dimensional unit vector. The reflection operator around |𝜓⟩ is

𝑅 |𝜓⟩ = 𝐼 − 2 |𝜓⟩ ⟨𝜓 | .

• 𝑅 |𝜓⟩ = 𝑅
†
|𝜓⟩ and 𝑅2

|𝜓⟩ = (𝐼 − 2 |𝜓⟩ ⟨𝜓 |) (𝐼 − 2 |𝜓⟩ ⟨𝜓 |) = 𝐼 .

• 𝑅 |𝜓⟩ is unitary: 𝑅 |𝜓⟩𝑅
†
|𝜓⟩ = 𝑅

†
|𝜓⟩𝑅 |𝜓⟩ = 𝑅

2
|𝜓⟩ = 𝐼 .

• If |𝜓⟩ = |𝑣⟩ /2𝑘 , 𝑅 |𝜓⟩ ∈ O𝑛.

2Vadym Kliuchnikov (2013). “Synthesis of unitaries with Clifford+ T circuits”. In: arXiv preprint
arXiv:1306.3200.

14

The Householder Algorithm2



With one ancilla, the gate complexity of exactly synthesizing O𝑛 over G𝑛 is
reduced from 𝑂 (2𝑛𝑘) to 𝑂 (𝑛2𝑘) .

Definition
Let |𝜓⟩ be an 𝑛-dimensional unit vector. The reflection operator around |𝜓⟩ is

𝑅 |𝜓⟩ = 𝐼 − 2 |𝜓⟩ ⟨𝜓 | .

• 𝑅 |𝜓⟩ = 𝑅
†
|𝜓⟩ and 𝑅2

|𝜓⟩ = (𝐼 − 2 |𝜓⟩ ⟨𝜓 |) (𝐼 − 2 |𝜓⟩ ⟨𝜓 |) = 𝐼 .

• 𝑅 |𝜓⟩ is unitary: 𝑅 |𝜓⟩𝑅
†
|𝜓⟩ = 𝑅

†
|𝜓⟩𝑅 |𝜓⟩ = 𝑅

2
|𝜓⟩ = 𝐼 .

• If |𝜓⟩ = |𝑣⟩ /2𝑘 , 𝑅 |𝜓⟩ ∈ O𝑛.

2Vadym Kliuchnikov (2013). “Synthesis of unitaries with Clifford+ T circuits”. In: arXiv preprint
arXiv:1306.3200.

14

The Householder Algorithm2



Proposition

Let |𝜓⟩ = |𝑣⟩ /2𝑘 be an 𝑛-dimensional unit vector. |𝜓⟩ is an integer vector and
lde( |𝜓⟩) = 𝑘 . The reflection operator 𝑅 |𝜓⟩ can be exactly represented by 𝑂 (𝑛𝑘)
generators over G𝑛.

Proof Sketch.

AGR|𝜓⟩ 𝐺 ∈ G𝑛

15

Gate Complexity of the Reflection Operator



Proposition

Let |𝜓⟩ = |𝑣⟩ /2𝑘 be an 𝑛-dimensional unit vector. |𝜓⟩ is an integer vector and
lde( |𝜓⟩) = 𝑘 . The reflection operator 𝑅 |𝜓⟩ can be exactly represented by 𝑂 (𝑛𝑘)
generators over G𝑛.

Proof Sketch.

AGR|𝜓⟩ 𝐺 ∈ G𝑛 |0⟩ = 𝐺 |𝜓⟩ ≡ 𝐺† |0⟩ = |𝜓⟩

15

Gate Complexity of the Reflection Operator



Proposition

Let |𝜓⟩ = |𝑣⟩ /2𝑘 be an 𝑛-dimensional unit vector. |𝜓⟩ is an integer vector and
lde( |𝜓⟩) = 𝑘 . The reflection operator 𝑅 |𝜓⟩ can be exactly represented by 𝑂 (𝑛𝑘)
generators over G𝑛.

Proof Sketch.

AGR|𝜓⟩ 𝐺 ∈ G𝑛 |0⟩ = 𝐺 |𝜓⟩ ≡ 𝐺† |0⟩ = |𝜓⟩

𝐺†𝑅 |0⟩𝐺 = 𝐺† (𝐼 − 2|0⟩⟨0|)𝐺 = 𝐼 − 2|𝜓⟩⟨𝜓 | C 𝑅 |𝜓⟩

15

Gate Complexity of the Reflection Operator



Proposition

Let |𝜓⟩ = |𝑣⟩ /2𝑘 be an 𝑛-dimensional unit vector. |𝜓⟩ is an integer vector and
lde( |𝜓⟩) = 𝑘 . The reflection operator 𝑅 |𝜓⟩ can be exactly represented by 𝑂 (𝑛𝑘)
generators over G𝑛.

Proof Sketch.

AGR|𝜓⟩ 𝐺 ∈ G𝑛 |0⟩ = 𝐺 |𝜓⟩ ≡ 𝐺† |0⟩ = |𝜓⟩

𝐺†𝑅 |0⟩𝐺 = 𝐺† (𝐼 − 2|0⟩⟨0|)𝐺 = 𝐼 − 2|𝜓⟩⟨𝜓 | C 𝑅 |𝜓⟩

AGR𝑅 |𝜓⟩ = 𝐺
†𝑅 |0⟩𝐺

15

Gate Complexity of the Reflection Operator



Proposition

Let |𝜓⟩ = |𝑣⟩ /2𝑘 be an 𝑛-dimensional unit vector. |𝜓⟩ is an integer vector and
lde( |𝜓⟩) = 𝑘 . The reflection operator 𝑅 |𝜓⟩ can be exactly represented by 𝑂 (𝑛𝑘)
generators over G𝑛.

Proof Sketch.

AGR|𝜓⟩ 𝐺 ∈ G𝑛 |0⟩ = 𝐺 |𝜓⟩ ≡ 𝐺† |0⟩ = |𝜓⟩

𝐺†𝑅 |0⟩𝐺 = 𝐺† (𝐼 − 2|0⟩⟨0|)𝐺 = 𝐼 − 2|𝜓⟩⟨𝜓 | C 𝑅 |𝜓⟩

AGR𝑅 |𝜓⟩ = 𝐺
†𝑅 |0⟩𝐺

𝐶𝐶 (𝐺†) = 𝐶𝐶 (𝐺) = 𝑂 (𝑛𝑘)

15

Gate Complexity of the Reflection Operator



Proposition

Let |𝜓⟩ = |𝑣⟩ /2𝑘 be an 𝑛-dimensional unit vector. |𝜓⟩ is an integer vector and
lde( |𝜓⟩) = 𝑘 . The reflection operator 𝑅 |𝜓⟩ can be exactly represented by 𝑂 (𝑛𝑘)
generators over G𝑛.

Proof Sketch.

AGR|𝜓⟩ 𝐺 ∈ G𝑛 |0⟩ = 𝐺 |𝜓⟩ ≡ 𝐺† |0⟩ = |𝜓⟩

𝐺†𝑅 |0⟩𝐺 = 𝐺† (𝐼 − 2|0⟩⟨0|)𝐺 = 𝐼 − 2|𝜓⟩⟨𝜓 | C 𝑅 |𝜓⟩

AGR𝑅 |𝜓⟩ = 𝐺
†𝑅 |0⟩𝐺

𝐶𝐶 (𝐺†) = 𝐶𝐶 (𝐺) = 𝑂 (𝑛𝑘)

𝐶𝐶 (𝑅 |0⟩) = 𝑂 (1)𝑅 |0⟩ = (−1)[0]
15

Gate Complexity of the Reflection Operator



Proposition

Let |𝜓⟩ = |𝑣⟩ /2𝑘 be an 𝑛-dimensional unit vector. |𝜓⟩ is an integer vector and
lde( |𝜓⟩) = 𝑘 . The reflection operator 𝑅 |𝜓⟩ can be exactly represented by 𝑂 (𝑛𝑘)
generators over G𝑛.

Proof Sketch.

AGR|𝜓⟩ 𝐺 ∈ G𝑛 |0⟩ = 𝐺 |𝜓⟩ ≡ 𝐺† |0⟩ = |𝜓⟩

𝐺†𝑅 |0⟩𝐺 = 𝐺† (𝐼 − 2|0⟩⟨0|)𝐺 = 𝐼 − 2|𝜓⟩⟨𝜓 | C 𝑅 |𝜓⟩

AGR𝑅 |𝜓⟩ = 𝐺
†𝑅 |0⟩𝐺

𝐶𝐶 (𝐺†) = 𝐶𝐶 (𝐺) = 𝑂 (𝑛𝑘)

𝐶𝐶 (𝑅 |0⟩) = 𝑂 (1)𝑅 |0⟩ = (−1)[0]

+ = 𝑂 (𝑛𝑘)

□
15

Gate Complexity of the Reflection Operator



Let 𝑈 ∈ O𝑛. Then 𝑈 can be simulated using the unitary 𝑈′:

𝑈′ = |+⟩ ⟨−| ⊗ 𝑈 + |−⟩ ⟨+| ⊗ 𝑈†.

𝑈′|−⟩ |+⟩

𝑈
...|𝜓⟩

{
...

}
𝑈 |𝜓⟩

• 𝑈′ ∈ O2𝑛 and 𝑈′ is unitary.

• 𝑈′ is Hermitian and thus normal.

16

Unitary Simulation



Let 𝑈 ∈ O𝑛. Then 𝑈 can be simulated using the unitary 𝑈′:

𝑈′ = |+⟩ ⟨−| ⊗ 𝑈 + |−⟩ ⟨+| ⊗ 𝑈†.

𝑈′|−⟩ |+⟩

𝑈
...|𝜓⟩

{
...

}
𝑈 |𝜓⟩

• 𝑈′ ∈ O2𝑛 and 𝑈′ is unitary.

• 𝑈′ is Hermitian and thus normal.

16

Unitary Simulation



Let 𝑈 ∈ O𝑛. Then 𝑈 can be simulated using the unitary 𝑈′:

𝑈′ = |+⟩ ⟨−| ⊗ 𝑈 + |−⟩ ⟨+| ⊗ 𝑈†.

𝑈′|−⟩ |+⟩

𝑈
...|𝜓⟩

{
...

}
𝑈 |𝜓⟩

• 𝑈′ ∈ O2𝑛 and 𝑈′ is unitary.

• 𝑈′ is Hermitian and thus normal.

16

Unitary Simulation



Let |𝑢 𝑗⟩ be the 𝑗-th column vector in 𝑈 and | 𝑗⟩ be the 𝑗-th computational basis
vector. 𝑈′ can be factored into 𝑛 reflections in O2𝑛.

𝑈′ =
𝑛−1∏
𝑗=0

𝑅 |𝜔−
𝑗
⟩ , |𝜔−

𝑗 ⟩ =
(
|−⟩ | 𝑗⟩ − |+⟩ |𝑢 𝑗⟩

)
√
2

• {
|𝜔±
𝑗
⟩ ; 0 ≤ 𝑗 ≤ 𝑛 − 1

}
forms an orthonomal basis.

⇒ 𝐼 =
∑𝑛−1
𝑗=0

(
|𝜔+
𝑗
⟩ ⟨𝜔+

𝑗
| + |𝜔−

𝑗
⟩ ⟨𝜔−

𝑗
|
)

The completeness relation

• |𝜔+
𝑗
⟩ and |𝜔−

𝑗
⟩ are the +1 and −1 eigenstates of 𝑈′.

⇒ 𝑈′ =
∑𝑛−1
𝑗=0

(
|𝜔+
𝑗
⟩ ⟨𝜔+

𝑗
| − |𝜔−

𝑗
⟩ ⟨𝜔−

𝑗
|
)

The spectral theorem

𝐼 −𝑈′ = 2
𝑛−1∑︁
𝑗=0

|𝜔−
𝑗 ⟩ ⟨𝜔−

𝑗 | ⇒ 𝑈′ = 𝐼 − 2
𝑛−1∑︁
𝑗=0

|𝜔−
𝑗 ⟩ ⟨𝜔−

𝑗 | =
𝑛−1∏
𝑗=0

𝑅 |𝜔−
𝑗
⟩ .

17

Unitary Factorization



Let |𝑢 𝑗⟩ be the 𝑗-th column vector in 𝑈 and | 𝑗⟩ be the 𝑗-th computational basis
vector. 𝑈′ can be factored into 𝑛 reflections in O2𝑛.

𝑈′ =
𝑛−1∏
𝑗=0

𝑅 |𝜔−
𝑗
⟩ , |𝜔−

𝑗 ⟩ =
(
|−⟩ | 𝑗⟩ − |+⟩ |𝑢 𝑗⟩

)
√
2

• {
|𝜔±
𝑗
⟩ ; 0 ≤ 𝑗 ≤ 𝑛 − 1

}
forms an orthonomal basis.

⇒ 𝐼 =
∑𝑛−1
𝑗=0

(
|𝜔+
𝑗
⟩ ⟨𝜔+

𝑗
| + |𝜔−

𝑗
⟩ ⟨𝜔−

𝑗
|
)

The completeness relation

• |𝜔+
𝑗
⟩ and |𝜔−

𝑗
⟩ are the +1 and −1 eigenstates of 𝑈′.

⇒ 𝑈′ =
∑𝑛−1
𝑗=0

(
|𝜔+
𝑗
⟩ ⟨𝜔+

𝑗
| − |𝜔−

𝑗
⟩ ⟨𝜔−

𝑗
|
)

The spectral theorem

𝐼 −𝑈′ = 2
𝑛−1∑︁
𝑗=0

|𝜔−
𝑗 ⟩ ⟨𝜔−

𝑗 | ⇒ 𝑈′ = 𝐼 − 2
𝑛−1∑︁
𝑗=0

|𝜔−
𝑗 ⟩ ⟨𝜔−

𝑗 | =
𝑛−1∏
𝑗=0

𝑅 |𝜔−
𝑗
⟩ .

17

Unitary Factorization



Let |𝑢 𝑗⟩ be the 𝑗-th column vector in 𝑈 and | 𝑗⟩ be the 𝑗-th computational basis
vector. 𝑈′ can be factored into 𝑛 reflections in O2𝑛.

𝑈′ =
𝑛−1∏
𝑗=0

𝑅 |𝜔−
𝑗
⟩ , |𝜔−

𝑗 ⟩ =
(
|−⟩ | 𝑗⟩ − |+⟩ |𝑢 𝑗⟩

)
√
2

• {
|𝜔±
𝑗
⟩ ; 0 ≤ 𝑗 ≤ 𝑛 − 1

}
forms an orthonomal basis.

⇒ 𝐼 =
∑𝑛−1
𝑗=0

(
|𝜔+
𝑗
⟩ ⟨𝜔+

𝑗
| + |𝜔−

𝑗
⟩ ⟨𝜔−

𝑗
|
)

The completeness relation

• |𝜔+
𝑗
⟩ and |𝜔−

𝑗
⟩ are the +1 and −1 eigenstates of 𝑈′.

⇒ 𝑈′ =
∑𝑛−1
𝑗=0

(
|𝜔+
𝑗
⟩ ⟨𝜔+

𝑗
| − |𝜔−

𝑗
⟩ ⟨𝜔−

𝑗
|
)

The spectral theorem

𝐼 −𝑈′ = 2
𝑛−1∑︁
𝑗=0

|𝜔−
𝑗 ⟩ ⟨𝜔−

𝑗 | ⇒ 𝑈′ = 𝐼 − 2
𝑛−1∑︁
𝑗=0

|𝜔−
𝑗 ⟩ ⟨𝜔−

𝑗 | =
𝑛−1∏
𝑗=0

𝑅 |𝜔−
𝑗
⟩ .

17

Unitary Factorization



Let |𝑢 𝑗⟩ be the 𝑗-th column vector in 𝑈 and | 𝑗⟩ be the 𝑗-th computational basis
vector. 𝑈′ can be factored into 𝑛 reflections in O2𝑛.

𝑈′ =
𝑛−1∏
𝑗=0

𝑅 |𝜔−
𝑗
⟩ , |𝜔−

𝑗 ⟩ =
(
|−⟩ | 𝑗⟩ − |+⟩ |𝑢 𝑗⟩

)
√
2

• {
|𝜔±
𝑗
⟩ ; 0 ≤ 𝑗 ≤ 𝑛 − 1

}
forms an orthonomal basis.

⇒ 𝐼 =
∑𝑛−1
𝑗=0

(
|𝜔+
𝑗
⟩ ⟨𝜔+

𝑗
| + |𝜔−

𝑗
⟩ ⟨𝜔−

𝑗
|
)

The completeness relation

• |𝜔+
𝑗
⟩ and |𝜔−

𝑗
⟩ are the +1 and −1 eigenstates of 𝑈′.

⇒ 𝑈′ =
∑𝑛−1
𝑗=0

(
|𝜔+
𝑗
⟩ ⟨𝜔+

𝑗
| − |𝜔−

𝑗
⟩ ⟨𝜔−

𝑗
|
)

The spectral theorem

𝐼 −𝑈′ = 2
𝑛−1∑︁
𝑗=0

|𝜔−
𝑗 ⟩ ⟨𝜔−

𝑗 | ⇒ 𝑈′ = 𝐼 − 2
𝑛−1∑︁
𝑗=0

|𝜔−
𝑗 ⟩ ⟨𝜔−

𝑗 | =
𝑛−1∏
𝑗=0

𝑅 |𝜔−
𝑗
⟩ .

17

Unitary Factorization



Let |𝑢 𝑗⟩ be the 𝑗-th column vector in 𝑈 and | 𝑗⟩ be the 𝑗-th computational basis
vector. 𝑈′ can be factored into 𝑛 reflections in O2𝑛.

𝑈′ =
𝑛−1∏
𝑗=0

𝑅 |𝜔−
𝑗
⟩ , |𝜔−

𝑗 ⟩ =
(
|−⟩ | 𝑗⟩ − |+⟩ |𝑢 𝑗⟩

)
√
2

• {
|𝜔±
𝑗
⟩ ; 0 ≤ 𝑗 ≤ 𝑛 − 1

}
forms an orthonomal basis.

⇒ 𝐼 =
∑𝑛−1
𝑗=0

(
|𝜔+
𝑗
⟩ ⟨𝜔+

𝑗
| + |𝜔−

𝑗
⟩ ⟨𝜔−

𝑗
|
)

The completeness relation

• |𝜔+
𝑗
⟩ and |𝜔−

𝑗
⟩ are the +1 and −1 eigenstates of 𝑈′.

⇒ 𝑈′ =
∑𝑛−1
𝑗=0

(
|𝜔+
𝑗
⟩ ⟨𝜔+

𝑗
| − |𝜔−

𝑗
⟩ ⟨𝜔−

𝑗
|
)

The spectral theorem

𝐼 −𝑈′ = 2
𝑛−1∑︁
𝑗=0

|𝜔−
𝑗 ⟩ ⟨𝜔−

𝑗 | ⇒ 𝑈′ = 𝐼 − 2
𝑛−1∑︁
𝑗=0

|𝜔−
𝑗 ⟩ ⟨𝜔−

𝑗 | =
𝑛−1∏
𝑗=0

𝑅 |𝜔−
𝑗
⟩ .

17

Unitary Factorization



Let |𝑢 𝑗⟩ be the 𝑗-th column vector in 𝑈 and | 𝑗⟩ be the 𝑗-th computational basis
vector. 𝑈′ can be factored into 𝑛 reflections in O2𝑛.

𝑈′ =
𝑛−1∏
𝑗=0

𝑅 |𝜔−
𝑗
⟩ , |𝜔−

𝑗 ⟩ =
(
|−⟩ | 𝑗⟩ − |+⟩ |𝑢 𝑗⟩

)
√
2

• {
|𝜔±
𝑗
⟩ ; 0 ≤ 𝑗 ≤ 𝑛 − 1

}
forms an orthonomal basis.

⇒ 𝐼 =
∑𝑛−1
𝑗=0

(
|𝜔+
𝑗
⟩ ⟨𝜔+

𝑗
| + |𝜔−

𝑗
⟩ ⟨𝜔−

𝑗
|
)

The completeness relation

• |𝜔+
𝑗
⟩ and |𝜔−

𝑗
⟩ are the +1 and −1 eigenstates of 𝑈′.

⇒ 𝑈′ =
∑𝑛−1
𝑗=0

(
|𝜔+
𝑗
⟩ ⟨𝜔+

𝑗
| − |𝜔−

𝑗
⟩ ⟨𝜔−

𝑗
|
)

The spectral theorem

𝐼 −𝑈′ = 2
𝑛−1∑︁
𝑗=0

|𝜔−
𝑗 ⟩ ⟨𝜔−

𝑗 | ⇒ 𝑈′ = 𝐼 − 2
𝑛−1∑︁
𝑗=0

|𝜔−
𝑗 ⟩ ⟨𝜔−

𝑗 | =
𝑛−1∏
𝑗=0

𝑅 |𝜔−
𝑗
⟩ .

17

Unitary Factorization



Theorem
Let 𝑈 ∈ O𝑛 with lde(𝑈) = 𝑘 . Then 𝑈 can be represented by 𝑂 (𝑛2𝑘) generators
from G𝑛 using the Householder algorithm.

Proof Sketch.
• 𝑈 can be simulated by 𝑈′ where

𝑈′ = |+⟩ ⟨−| ⊗ 𝑈 + |−⟩ ⟨+| ⊗ 𝑈† =
𝑛−1∏
𝑗=0

𝑅 |𝜔−
𝑗
⟩ .

• 𝑅 |𝜔−
𝑗
⟩ can be exactly represented by 𝑂 (𝑛𝑘) generators from G𝑛.

• To represent 𝑈, we need 𝑛 · 𝑂 (𝑛𝑘) = 𝑂 (𝑛2𝑘) generators from G𝑛.
□

18

Gate Complexity of the Householder Algorithm



Theorem
Let 𝑈 ∈ O𝑛 with lde(𝑈) = 𝑘 . Then 𝑈 can be represented by 𝑂 (𝑛2𝑘) generators
from G𝑛 using the Householder algorithm.

Proof Sketch.
• 𝑈 can be simulated by 𝑈′ where

𝑈′ = |+⟩ ⟨−| ⊗ 𝑈 + |−⟩ ⟨+| ⊗ 𝑈† =
𝑛−1∏
𝑗=0

𝑅 |𝜔−
𝑗
⟩ .

• 𝑅 |𝜔−
𝑗
⟩ can be exactly represented by 𝑂 (𝑛𝑘) generators from G𝑛.

• To represent 𝑈, we need 𝑛 · 𝑂 (𝑛𝑘) = 𝑂 (𝑛2𝑘) generators from G𝑛.
□

18

Gate Complexity of the Householder Algorithm



Theorem
Let 𝑈 ∈ O𝑛 with lde(𝑈) = 𝑘 . Then 𝑈 can be represented by 𝑂 (𝑛2𝑘) generators
from G𝑛 using the Householder algorithm.

Proof Sketch.
• 𝑈 can be simulated by 𝑈′ where

𝑈′ = |+⟩ ⟨−| ⊗ 𝑈 + |−⟩ ⟨+| ⊗ 𝑈† =
𝑛−1∏
𝑗=0

𝑅 |𝜔−
𝑗
⟩ .

• 𝑅 |𝜔−
𝑗
⟩ can be exactly represented by 𝑂 (𝑛𝑘) generators from G𝑛.

• To represent 𝑈, we need 𝑛 · 𝑂 (𝑛𝑘) = 𝑂 (𝑛2𝑘) generators from G𝑛.
□

18

Gate Complexity of the Householder Algorithm



• The AGR algorithm carries out matrix factorization locally - it synthesizes
one column at a time.

• When 𝑛 is fixed, both AGR and householder algorithms have the same
worst-case gate complexity – linear in 𝑘 .

𝑂 (2𝑛𝑘) =⇒ 𝑂 (𝑘), 𝑂 (𝑛2𝑘) =⇒ 𝑂 (𝑘)

• To reduce the gate complexity, we take a global view of each matrix.

• Define a global synthesis method for 𝑈 ∈ L8, then leverage this to find a
global synthesis method for 𝑈 ∈ O8.

19

The Global Synthesis Algorithm



• The AGR algorithm carries out matrix factorization locally - it synthesizes
one column at a time.

• When 𝑛 is fixed, both AGR and householder algorithms have the same
worst-case gate complexity – linear in 𝑘 .

𝑂 (2𝑛𝑘) =⇒ 𝑂 (𝑘), 𝑂 (𝑛2𝑘) =⇒ 𝑂 (𝑘)

• To reduce the gate complexity, we take a global view of each matrix.

• Define a global synthesis method for 𝑈 ∈ L8, then leverage this to find a
global synthesis method for 𝑈 ∈ O8.

19

The Global Synthesis Algorithm



• The AGR algorithm carries out matrix factorization locally - it synthesizes
one column at a time.

• When 𝑛 is fixed, both AGR and householder algorithms have the same
worst-case gate complexity – linear in 𝑘 .

𝑂 (2𝑛𝑘) =⇒ 𝑂 (𝑘), 𝑂 (𝑛2𝑘) =⇒ 𝑂 (𝑘)

• To reduce the gate complexity, we take a global view of each matrix.

• Define a global synthesis method for 𝑈 ∈ L8, then leverage this to find a
global synthesis method for 𝑈 ∈ O8.

19

The Global Synthesis Algorithm



• The AGR algorithm carries out matrix factorization locally - it synthesizes
one column at a time.

• When 𝑛 is fixed, both AGR and householder algorithms have the same
worst-case gate complexity – linear in 𝑘 .

𝑂 (2𝑛𝑘) =⇒ 𝑂 (𝑘), 𝑂 (𝑛2𝑘) =⇒ 𝑂 (𝑘)

• To reduce the gate complexity, we take a global view of each matrix.

• Define a global synthesis method for 𝑈 ∈ L8, then leverage this to find a
global synthesis method for 𝑈 ∈ O8.

19

The Global Synthesis Algorithm



Definition
L𝑛 is the group of orthogonal scaled dyadic matrices , which consists of 𝑛 × 𝑛
orthogonal matrices of the form 𝑀/

√
2𝑘 , where 𝑀 is an integer matrix and 𝑘 is a

nonnegative integer.

Example: 𝑉 ∈ L4

𝑉 =
1
√
2


1 0 −1 0
0 −1 0 −1
1 0 1 0
0 1 0 −1



20

Orthogonal Scaled Dyadic Matrices



Definition
L𝑛 is the group of orthogonal scaled dyadic matrices , which consists of 𝑛 × 𝑛
orthogonal matrices of the form 𝑀/

√
2𝑘 , where 𝑀 is an integer matrix and 𝑘 is a

nonnegative integer.

Example: 𝑉 ∈ L4

𝑉 =
1
√
2


1 0 −1 0
0 −1 0 −1
1 0 1 0
0 1 0 −1


20

Orthogonal Scaled Dyadic Matrices



• L𝑛 is the group of orthogonal scaled dyadic matrices , which consists of
𝑛 × 𝑛 orthogonal matrices of the form 𝑀/

√
2𝑘 , where 𝑀 is an integer matrix

and 𝑘 is a nonnegative integer.

• O𝑛 is the group of orthogonal dyadic matrices, which consists of 𝑛 × 𝑛
orthogonal matrices of the form 𝑀/2𝑘 , where 𝑀 is an integer matrix and 𝑘

is a nonnegative integer.

Example: 𝑉 ∈ L4

𝑉 =
1
√
2


1 0 −1 0
0 −1 0 −1
1 0 1 0
0 1 0 −1



Example: 𝑈 ∈ O4

𝑈 =
1

2


1 −1 −1 −1
1 1 −1 1
1 1 1 −1
1 −1 1 1


21

Orthogonal (Scaled) Dyadic Matrices



• L𝑛 is the group of orthogonal scaled dyadic matrices , which consists of
𝑛 × 𝑛 orthogonal matrices of the form 𝑀/

√
2𝑘 , where 𝑀 is an integer matrix

and 𝑘 is a nonnegative integer.

• O𝑛 is the group of orthogonal dyadic matrices, which consists of 𝑛 × 𝑛
orthogonal matrices of the form 𝑀/2𝑘 , where 𝑀 is an integer matrix and 𝑘

is a nonnegative integer.

Example: 𝑉 ∈ L4

𝑉 =
1
√
2


1 0 −1 0
0 −1 0 −1
1 0 1 0
0 1 0 −1



Example: 𝑈 ∈ O4

𝑈 =
1

√
2
2


1 −1 −1 −1
1 1 −1 1
1 1 1 −1
1 −1 1 1



• O𝑛 ⊂ L𝑛.

21

Orthogonal (Scaled) Dyadic Matrices



• L𝑛 is the group of orthogonal scaled dyadic matrices , which consists of
𝑛 × 𝑛 orthogonal matrices of the form 𝑀/

√
2𝑘 , where 𝑀 is an integer matrix

and 𝑘 is a nonnegative integer.

• O𝑛 is the group of orthogonal dyadic matrices, which consists of 𝑛 × 𝑛
orthogonal matrices of the form 𝑀/2𝑘 , where 𝑀 is an integer matrix and 𝑘

is a nonnegative integer.

Example: 𝑉 ∈ L4

𝑉 =
1
√
2


1 0 −1 0
0 −1 0 −1
1 0 1 0
0 1 0 −1



Example: 𝑈 ∈ O4

𝑈 =
1

√
2
2


1 −1 −1 −1
1 1 −1 1
1 1 1 −1
1 −1 1 1


• O𝑛 ⊂ L𝑛.

21

Orthogonal (Scaled) Dyadic Matrices



G𝑛 =
{
(−1)[𝛼] , 𝑋[𝛼,𝛽 ] , 𝐾[𝛼,𝛽,𝛾, 𝛿 ] : 1 ≤ 𝛼 < 𝛽 < 𝛾 < 𝛿 ≤ 𝑛

}
.

F𝑛 =
{
(−1)[𝛼] , 𝑋[𝛼,𝛽 ] , 𝐾[𝛼,𝛽,𝛾, 𝛿 ] , 𝐼𝑛/2 ⊗ 𝐻 : 1 ≤ 𝛼 < 𝛽 < 𝛾 < 𝛿 ≤ 𝑛

}
.

22

The Circuit-Matrix Correspondence II



G𝑛 =
{
(−1)[𝛼] , 𝑋[𝛼,𝛽 ] , 𝐾[𝛼,𝛽,𝛾, 𝛿 ] : 1 ≤ 𝛼 < 𝛽 < 𝛾 < 𝛿 ≤ 𝑛

}
.

F𝑛 =
{
(−1)[𝛼] , 𝑋[𝛼,𝛽 ] , 𝐾[𝛼,𝛽,𝛾, 𝛿 ] , 𝐼 ⊗ 𝐻 : 1 ≤ 𝛼 < 𝛽 < 𝛾 < 𝛿 ≤ 𝑛

}
.

Theorem
Let 𝑈 be an 𝑛 × 𝑛matrix. 𝑈 ∈ L𝑛 if and only if

− 𝑈 can be written as a product of elements of F𝑛.
• The gate complexity is 𝑂 (2𝑛𝑘).

− 𝑈 can be exactly represented by a circuit over {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐻}.
• The gate complexity is 𝑂 (2𝑛 log(𝑛)𝑘).

22

The Circuit-Matrix Correspondence II



G𝑛 =
{
(−1)[𝛼] , 𝑋[𝛼,𝛽 ] , 𝐾[𝛼,𝛽,𝛾, 𝛿 ] : 1 ≤ 𝛼 < 𝛽 < 𝛾 < 𝛿 ≤ 𝑛

}
.

F𝑛 =
{
(−1)[𝛼] , 𝑋[𝛼,𝛽 ] , 𝐾[𝛼,𝛽,𝛾, 𝛿 ] , 𝐼 ⊗ 𝐻 : 1 ≤ 𝛼 < 𝛽 < 𝛾 < 𝛿 ≤ 𝑛

}
.

Theorem
Let 𝑈 be an 𝑛 × 𝑛matrix. 𝑈 ∈ L𝑛 if and only if

− 𝑈 can be written as a product of elements of F𝑛.
• The gate complexity is 𝑂 (2𝑛𝑘).

− 𝑈 can be exactly represented by a circuit over {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐻}.
• The gate complexity is 𝑂 (2𝑛 log(𝑛)𝑘).

22

The Circuit-Matrix Correspondence II



𝑈 ∈ L8. Write 𝑈 = 1√
2
𝑘𝑀 with 𝑘 minimal. There exists

−→
𝐺1, . . . ,

−→
𝐺𝑘 over F8, such that

1
√
2
𝑘
𝑀

−→
𝐺1−−→ 1

√
2
𝑘−1𝑀

′
−→
𝐺2−−→ 1

√
2
𝑘−2𝑀

′′
−→
𝐺3−−→ · · ·

−→
𝐺𝑘−−→ I.

Therefore, −→
𝐺𝑘 · · · · ·

−→
𝐺1𝑈 = I =⇒ 𝑈 =

−→
𝐺1

−1 · · · · · −→𝐺𝑘−1.

23

Intuitions



Binary Pattern

Let 𝑈 ∈ L𝑛. Write 𝑈 = 1√
2
𝑘𝑀 with 𝑘 minimal. The residue mod 2 of 𝑀 is called the

binary pattern of 𝑈, denoted as 𝑈.

Example: 𝑈 ∈ L5

𝑈 =
1

√
2
4


3 1 −1 1 2
1 3 1 −1 −2

−1 1 3 1 2
1 −1 1 3 −2

−2 2 −2 2 0


→ 𝑈 =


1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
0 0 0 0 0


24

Preliminaries



Proposition

Let 𝑈 ∈ L8 with lde√2 (𝑈) ≥ 2. Then up to row permutation, column permutation,
and taking the transpose, 𝑈 is one of the 14 binary patterns.

Proof Sketch. Case distinction using the Weight and Collision Lemmas.

Definition
Let 𝑛 be even and 𝐵 ∈ Z𝑛×𝑛2 . B is row-paired if the rows of B can be partitioned
into identical pairs.

Example: Row-paired

𝑈 =


0 1 0 1
1 1 1 1
0 1 0 1
1 1 1 1



Example: NOT row-paired

𝑉 =


0 1 0 1
1 1 1 1
0 1 0 1
0 1 0 1

 25

Binary Patterns of L8



Binary patterns that are NICE.

𝐴 =



1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1


, 𝐵 =



1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0


, . . . , 𝐾 =



1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


Binary patterns that are NOT NICE.

𝐿 =



1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 1 0 0 0 0 1 1

1 0 1 0 1 0 1 0

1 0 1 0 0 1 0 1

1 0 0 1 1 0 0 1

1 0 0 1 0 1 1 0


, 𝑀 =



1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 0 0 1 0 1 1 0

0 1 1 0 1 0 0 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1


, 𝑁 =



1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 0 0 1 0 1 1 0

0 1 1 0 0 1 1 0

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0


26



Binary patterns that are NICE.

𝐴 =



1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1


, 𝐵 =



1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0


, . . . , 𝐾 =



1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


Binary patterns that are NOT NICE.

𝐿 =



1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 1 0 0 0 0 1 1

1 0 1 0 1 0 1 0

1 0 1 0 0 1 0 1

1 0 0 1 1 0 0 1

1 0 0 1 0 1 1 0


, 𝑀 =



1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 0 0 1 0 1 1 0

0 1 1 0 1 0 0 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1


, 𝑁 =



1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 0 0 1 0 1 1 0

0 1 1 0 0 1 1 0

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0


26



Binary patterns that are NICE.

𝐴 =



1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1


, 𝐵 =



1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0


, . . . , 𝐾 =



1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


Binary patterns that are NOT NICE.

𝐿 =



1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 1 0 0 0 0 1 1

1 0 1 0 1 0 1 0

1 0 1 0 0 1 0 1

1 0 0 1 1 0 0 1

1 0 0 1 0 1 1 0


, 𝑀 =



1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 0 0 1 0 1 1 0

0 1 1 0 1 0 0 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1


, 𝑁 =



1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 0 0 1 0 1 1 0

0 1 1 0 0 1 1 0

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0


26



Weight Lemma

Let 𝑈 ∈ L𝑛 with lde√2 (𝑈) = 𝑘 . If 𝑘 > 1, the number of 1’s in any column of 𝑈 is
doubly-even.

Intuition: The 1’s in any two distinct columns of 𝑈 collide evenly many times.

Collision Lemma
Let 𝑈 ∈ L𝑛 with lde√2(𝑈) = 𝑘 . If 𝑘 > 0, any two distinct columns of 𝑈 have evenly
many 1’s in common.

Example: Evenly many collisions

𝑢1 =


1
1
1
1
0


, 𝑢2 =


0
0
1
1
1



Example: Oddly many collisions

𝑢3 =


1
1
1
1
0


, 𝑢4 =


1
1
1
0
1



27

Number-Theoretic Properties



Weight Lemma

Let 𝑈 ∈ L𝑛 with lde√2 (𝑈) = 𝑘 . If 𝑘 > 1, the number of 1’s in any column of 𝑈 is
doubly-even.

Intuition: The 1’s in any two distinct columns of 𝑈 collide evenly many times.

Collision Lemma
Let 𝑈 ∈ L𝑛 with lde√2 (𝑈) = 𝑘 . If 𝑘 > 0, any two distinct columns of 𝑈 have evenly
many 1’s in common.

Example: Evenly many collisions

𝑢1 =


1
1
1
1
0


, 𝑢2 =


0
0
1
1
1



Example: Oddly many collisions

𝑢3 =


1
1
1
1
0


, 𝑢4 =


1
1
1
0
1



27

Number-Theoretic Properties



Weight Lemma

Let 𝑈 ∈ L𝑛 with lde√2 (𝑈) = 𝑘 . If 𝑘 > 1, the number of 1’s in any column of 𝑈 is
doubly-even.

Intuition: The 1’s in any two distinct columns of 𝑈 collide evenly many times.

Collision Lemma
Let 𝑈 ∈ L𝑛 with lde√2 (𝑈) = 𝑘 . If 𝑘 > 0, any two distinct columns of 𝑈 have evenly
many 1’s in common.

Example: Evenly many collisions

𝑢1 =


1
1
1
1
0


, 𝑢2 =


0
0
1
1
1



Example: Oddly many collisions

𝑢3 =


1
1
1
1
0


, 𝑢4 =


1
1
1
0
1


27

Number-Theoretic Properties



Weight Lemma

Let 𝑈 ∈ L𝑛 with lde√2 (𝑈) = 𝑘 . If 𝑘 > 1, the number of 1’s in any column of 𝑈 is
doubly-even.

Intuition: The 1’s in any two distinct columns of 𝑈 collide evenly many times.

Collision Lemma
Let 𝑈 ∈ L𝑛 with lde√2 (𝑈) = 𝑘 . If 𝑘 > 0, any two distinct columns of 𝑈 have evenly
many 1’s in common.

Example: Evenly many collisions

𝑢1 =


1
1
1
1
0


, 𝑢2 =


0
0
1
1
1



Example: Oddly many collisions

𝑢3 =


1
1
1
1
0


, 𝑢4 =


1
1
1
0
1


27

Number-Theoretic Properties



Lemma (Row-Paired Reduction)

Let 𝑛 be even, 𝑈 ∈ L𝑛 with lde√2 (𝑈) = 𝑘 . If 𝑈 is row-paired, there exists 𝑃 ∈ 𝑆𝑛 such
that lde√2

(
((𝐼 ⊗ 𝐻) 𝑃)𝑈

)
< lde√2 (𝑈).

Proof Sketch. Since 𝑈 is row-paired, there exists 𝑃 ∈ 𝑆𝑛 such that

𝑃𝑈 =
1

√
2
𝑘


𝑟1
𝑟2
...

𝑟𝑛


, 𝑟1 ≡ 𝑟2 (2), . . . , 𝑟𝑛−1 ≡ 𝑟𝑛 (2).

𝐻 =
1
√
2

[
1 1
1 −1

]
and 𝐼 ⊗ 𝐻 =


𝐻 0 0

0
. . . 0

0 0 𝐻



implies that (𝐼 ⊗ 𝐻) 𝑃𝑈 =
1

√
2
𝑘+1


𝑟1 + 𝑟2
𝑟1 − 𝑟2
...

𝑟𝑛−1 − 𝑟𝑛


=

2
√
2
𝑘+1


𝑡1
𝑡2
...

𝑡𝑛


=

1
√
2
𝑘−1


𝑡1
𝑡2
...

𝑡𝑛


, 𝑡1, 𝑡2, . . . , 𝑡𝑛 ∈ Z.

□

28

When the Binary Pattern is NICE



Lemma (Row-Paired Reduction)

Let 𝑛 be even, 𝑈 ∈ L𝑛 with lde√2 (𝑈) = 𝑘 . If 𝑈 is row-paired, there exists 𝑃 ∈ 𝑆𝑛 such
that lde√2

(
((𝐼 ⊗ 𝐻) 𝑃)𝑈

)
< lde√2 (𝑈).

Proof Sketch. Since 𝑈 is row-paired, there exists 𝑃 ∈ 𝑆𝑛 such that

𝑃𝑈 =
1

√
2
𝑘


𝑟1
𝑟2
...

𝑟𝑛


, 𝑟1 ≡ 𝑟2 (2), . . . , 𝑟𝑛−1 ≡ 𝑟𝑛 (2). 𝐻 =

1
√
2

[
1 1
1 −1

]
and 𝐼 ⊗ 𝐻 =


𝐻 0 0

0
. . . 0

0 0 𝐻



implies that (𝐼 ⊗ 𝐻) 𝑃𝑈 =
1

√
2
𝑘+1


𝑟1 + 𝑟2
𝑟1 − 𝑟2
...

𝑟𝑛−1 − 𝑟𝑛


=

2
√
2
𝑘+1


𝑡1
𝑡2
...

𝑡𝑛


=

1
√
2
𝑘−1


𝑡1
𝑡2
...

𝑡𝑛


, 𝑡1, 𝑡2, . . . , 𝑡𝑛 ∈ Z.

□ 28

When the Binary Pattern is NICE



Lemma (When the Binary Pattern is NOT NICE)

Let 𝑈 ∈ L8 with lde√2 (𝑈) = 𝑘 . If 𝑈 is neither row-paired nor column-paired,
(𝐼 ⊗ 𝐻)𝑈 (𝐼 ⊗ 𝐻) is row-paired and lde√2

(
(𝐼 ⊗ 𝐻)𝑈 (𝐼 ⊗ 𝐻)

)
≤ lde√2 (𝑈).

Proposition

Let 𝑈 ∈ L8 with lde√2(𝑈) = 𝑘 . 𝑈 can be represented by 𝑂 (𝑘) generators in F8

using the global synthesis algorithm.

Proof Sketch. Let 𝑈 ∈ L8, proceed by induction on 𝑘 .

Global Synthesis
for L8

𝑈 ∈ L8

𝑘 ≤ 1

lde(𝑈) = 𝑘

lde(C𝑈) ≤ 0, length(C) = 𝑂 (1)

29

Global Synthesis for L8



Lemma (When the Binary Pattern is NOT NICE)

Let 𝑈 ∈ L8 with lde√2 (𝑈) = 𝑘 . If 𝑈 is neither row-paired nor column-paired,
(𝐼 ⊗ 𝐻)𝑈 (𝐼 ⊗ 𝐻) is row-paired and lde√2

(
(𝐼 ⊗ 𝐻)𝑈 (𝐼 ⊗ 𝐻)

)
≤ lde√2 (𝑈).

Proposition

Let 𝑈 ∈ L8 with lde√2 (𝑈) = 𝑘 . 𝑈 can be represented by 𝑂 (𝑘) generators in F8

using the global synthesis algorithm.

Proof Sketch. Let 𝑈 ∈ L8, proceed by induction on 𝑘 .

Global Synthesis
for L8

𝑈 ∈ L8

𝑘 ≤ 1

lde(𝑈) = 𝑘

lde(C𝑈) ≤ 0, length(C) = 𝑂 (1)

29

Global Synthesis for L8



Lemma (When the Binary Pattern is NOT NICE)

Let 𝑈 ∈ L8 with lde√2 (𝑈) = 𝑘 . If 𝑈 is neither row-paired nor column-paired,
(𝐼 ⊗ 𝐻)𝑈 (𝐼 ⊗ 𝐻) is row-paired and lde√2

(
(𝐼 ⊗ 𝐻)𝑈 (𝐼 ⊗ 𝐻)

)
≤ lde√2 (𝑈).

Proposition

Let 𝑈 ∈ L8 with lde√2 (𝑈) = 𝑘 . 𝑈 can be represented by 𝑂 (𝑘) generators in F8

using the global synthesis algorithm.

Proof Sketch. Let 𝑈 ∈ L8, proceed by induction on 𝑘 .

Global Synthesis
for L8

𝑈 ∈ L8

𝑘 ≤ 1

lde(𝑈) = 𝑘

lde(C𝑈) ≤ 0, length(C) = 𝑂 (1)

29

Global Synthesis for L8



Lemma (When the Binary Pattern is NOT NICE)

Let 𝑈 ∈ L8 with lde√2 (𝑈) = 𝑘 . If 𝑈 is neither row-paired nor column-paired,
(𝐼 ⊗ 𝐻)𝑈 (𝐼 ⊗ 𝐻) is row-paired and lde√2

(
(𝐼 ⊗ 𝐻)𝑈 (𝐼 ⊗ 𝐻)

)
≤ lde√2 (𝑈).

Proposition

Let 𝑈 ∈ L8 with lde√2 (𝑈) = 𝑘 . 𝑈 can be represented by 𝑂 (𝑘) generators in F8

using the global synthesis algorithm.

Proof Sketch. Let 𝑈 ∈ L8, proceed by induction on 𝑘 .

Global Synthesis
for L8

𝑈 ∈ L8

𝑘 ≤ 1

𝑘 ≥ 2
𝑈 ∈ P

lde(𝑈) = 𝑘

lde(C𝑈) ≤ 0, length(C) = 𝑂 (1)

29

Global Synthesis for L8



Lemma (When the Binary Pattern is NOT NICE)

Let 𝑈 ∈ L8 with lde√2 (𝑈) = 𝑘 . If 𝑈 is neither row-paired nor column-paired,
(𝐼 ⊗ 𝐻)𝑈 (𝐼 ⊗ 𝐻) is row-paired and lde√2

(
(𝐼 ⊗ 𝐻)𝑈 (𝐼 ⊗ 𝐻)

)
≤ lde√2 (𝑈).

Proposition

Let 𝑈 ∈ L8 with lde√2 (𝑈) = 𝑘 . 𝑈 can be represented by 𝑂 (𝑘) generators in F8

using the global synthesis algorithm.

Proof Sketch. Let 𝑈 ∈ L8, proceed by induction on 𝑘 .

Global Synthesis
for L8

𝑈 ∈ L8

𝑘 ≤ 1

𝑘 ≥ 2
𝑈 ∈ P

𝑈 NICE

lde((𝐼 ⊗ 𝐻) 𝑃𝑈) ≤ 𝑘 − 1

lde(𝑈) = 𝑘

lde(C𝑈) ≤ 0, length(C) = 𝑂 (1)

29

Global Synthesis for L8



Lemma (When the Binary Pattern is NOT NICE)

Let 𝑈 ∈ L8 with lde√2 (𝑈) = 𝑘 . If 𝑈 is neither row-paired nor column-paired,
(𝐼 ⊗ 𝐻)𝑈 (𝐼 ⊗ 𝐻) is row-paired and lde√2

(
(𝐼 ⊗ 𝐻)𝑈 (𝐼 ⊗ 𝐻)

)
≤ lde√2 (𝑈).

Proposition

Let 𝑈 ∈ L8 with lde√2 (𝑈) = 𝑘 . 𝑈 can be represented by 𝑂 (𝑘) generators in F8

using the global synthesis algorithm.

Proof Sketch. Let 𝑈 ∈ L8, proceed by induction on 𝑘 .

Global Synthesis
for L8

𝑈 ∈ L8

𝑘 ≤ 1

𝑘 ≥ 2
𝑈 ∈ P

𝑈 NOT NICE

𝑈 NICE

lde((𝐼 ⊗ 𝐻) 𝑃𝑈) ≤ 𝑘 − 1

lde ((𝐼 ⊗ 𝐻) 𝑃 (𝐼 ⊗ 𝐻)𝑈 (𝐼 ⊗ 𝐻)) ≤ 𝑘 − 1

lde(𝑈) = 𝑘

lde(C𝑈) ≤ 0, length(C) = 𝑂 (1)

□ 29

Global Synthesis for L8



• L𝑛 is generated by F𝑛 =
{
(−1)[𝛼] , 𝑋[𝛼,𝛽 ] , 𝐾[𝛼,𝛽,𝛾, 𝛿 ] , 𝐼 ⊗ 𝐻 : 1 ≤ 𝛼 < 𝛽 < 𝛾 < 𝛿 ≤ 𝑛

}
.

• O𝑛 is generated by G𝑛 =
{
(−1)[𝛼] , 𝑋[𝛼,𝛽 ] , 𝐾[𝛼,𝛽,𝛾, 𝛿 ] : 1 ≤ 𝛼 < 𝛽 < 𝛾 < 𝛿 ≤ 𝑛

}
.

(𝐼 ⊗ 𝐻) (𝐼 ⊗ 𝐻) = 𝜖

(𝐼 ⊗ 𝐻) (−1)[𝑎] = (−1)[𝑎]𝑋[𝑎,𝑎+1] (−1)[𝑎] (𝐼 ⊗ 𝐻)
(𝐼 ⊗ 𝐻) (−1)[𝑎] = 𝑋[𝑎−1,𝑎] (𝐼 ⊗ 𝐻)
(𝐼 ⊗ 𝐻)𝑋[𝑎,𝑎+1] = (−1)[𝑎+1] (𝐼 ⊗ 𝐻)
(𝐼 ⊗ 𝐻)𝑋[𝑎,𝑎+1] = 𝐾[𝑎−1,𝑎,𝑎+1,𝑎+2]𝑋[𝑎,𝑎+1] (𝐼 ⊗ 𝐻)

Intuition: Pushing 𝐼 ⊗ 𝐻 through an element in G𝑛 adds 𝑂 (1) gates.

3Sarah Meng Li, Neil J Ross, and Peter Selinger (2021). “Generators and relations for the group
𝑂𝑛 (Z[1/2] )”. In: arXiv preprint arXiv:2106.01175.

30

Pushing Hadamard through G (PHG)3



• L𝑛 is generated by F𝑛 =
{
(−1)[𝛼] , 𝑋[𝛼,𝛽 ] , 𝐾[𝛼,𝛽,𝛾, 𝛿 ] , 𝐼 ⊗ 𝐻 : 1 ≤ 𝛼 < 𝛽 < 𝛾 < 𝛿 ≤ 𝑛

}
.

• O𝑛 is generated by G𝑛 =
{
(−1)[𝛼] , 𝑋[𝛼,𝛽 ] , 𝐾[𝛼,𝛽,𝛾, 𝛿 ] : 1 ≤ 𝛼 < 𝛽 < 𝛾 < 𝛿 ≤ 𝑛

}
.

(𝐼 ⊗ 𝐻) (𝐼 ⊗ 𝐻) = 𝜖

(𝐼 ⊗ 𝐻) (−1)[𝑎] = (−1)[𝑎]𝑋[𝑎,𝑎+1] (−1)[𝑎] (𝐼 ⊗ 𝐻)
(𝐼 ⊗ 𝐻) (−1)[𝑎] = 𝑋[𝑎−1,𝑎] (𝐼 ⊗ 𝐻)
(𝐼 ⊗ 𝐻)𝑋[𝑎,𝑎+1] = (−1)[𝑎+1] (𝐼 ⊗ 𝐻)
(𝐼 ⊗ 𝐻)𝑋[𝑎,𝑎+1] = 𝐾[𝑎−1,𝑎,𝑎+1,𝑎+2]𝑋[𝑎,𝑎+1] (𝐼 ⊗ 𝐻)

Intuition: Pushing 𝐼 ⊗ 𝐻 through an element in G𝑛 adds 𝑂 (1) gates.

3Sarah Meng Li, Neil J Ross, and Peter Selinger (2021). “Generators and relations for the group
𝑂𝑛 (Z[1/2] )”. In: arXiv preprint arXiv:2106.01175.

30

Pushing Hadamard through G (PHG)3



• L𝑛 is generated by F𝑛 =
{
(−1)[𝛼] , 𝑋[𝛼,𝛽 ] , 𝐾[𝛼,𝛽,𝛾, 𝛿 ] , 𝐼 ⊗ 𝐻 : 1 ≤ 𝛼 < 𝛽 < 𝛾 < 𝛿 ≤ 𝑛

}
.

• O𝑛 is generated by G𝑛 =
{
(−1)[𝛼] , 𝑋[𝛼,𝛽 ] , 𝐾[𝛼,𝛽,𝛾, 𝛿 ] : 1 ≤ 𝛼 < 𝛽 < 𝛾 < 𝛿 ≤ 𝑛

}
.

(𝐼 ⊗ 𝐻) (𝐼 ⊗ 𝐻) = 𝜖

(𝐼 ⊗ 𝐻) (−1)[𝑎] = (−1)[𝑎]𝑋[𝑎,𝑎+1] (−1)[𝑎] (𝐼 ⊗ 𝐻)
(𝐼 ⊗ 𝐻) (−1)[𝑎] = 𝑋[𝑎−1,𝑎] (𝐼 ⊗ 𝐻)
(𝐼 ⊗ 𝐻)𝑋[𝑎,𝑎+1] = (−1)[𝑎+1] (𝐼 ⊗ 𝐻)
(𝐼 ⊗ 𝐻)𝑋[𝑎,𝑎+1] = 𝐾[𝑎−1,𝑎,𝑎+1,𝑎+2]𝑋[𝑎,𝑎+1] (𝐼 ⊗ 𝐻)

Intuition: Pushing 𝐼 ⊗ 𝐻 through an element in G𝑛 adds 𝑂 (1) gates.

3Sarah Meng Li, Neil J Ross, and Peter Selinger (2021). “Generators and relations for the group
𝑂𝑛 (Z[1/2] )”. In: arXiv preprint arXiv:2106.01175.

30

Pushing Hadamard through G (PHG)3



Theorem
Let 𝑈 ∈ O8 with lde(𝑈) = 𝑘 . 𝑈 can be represented by 𝑂 (𝑘) generators in G8 using
the global synthesis algorithm.

Proof Sketch. Since 𝑈 ∈ L8 with lde√2 (𝑈) = 2𝑘 , globally synthesizing 𝑈 over F8

yields evenly many 𝐼 ⊗ 𝐻.

Global Synthesis
for L8

𝑈 ∈ O8 𝑈 = C1(𝐼 ⊗ 𝐻)C2 (𝐼 ⊗ 𝐻)C3 (𝐼 ⊗ 𝐻)C4 (𝐼 ⊗ 𝐻)C5

C1, C2, C3, C4, C5 over G8

length(𝑈) = 𝑂 (𝑘 )

31

Global Synthesis for O8



Theorem
Let 𝑈 ∈ O8 with lde(𝑈) = 𝑘 . 𝑈 can be represented by 𝑂 (𝑘) generators in G8 using
the global synthesis algorithm.

Proof Sketch. Since 𝑈 ∈ L8 with lde√2 (𝑈) = 2𝑘 , globally synthesizing 𝑈 over F8

yields evenly many 𝐼 ⊗ 𝐻.

Global Synthesis
for L8

𝑈 ∈ O8 𝑈 = C1(𝐼 ⊗ 𝐻)C2 (𝐼 ⊗ 𝐻)C3 (𝐼 ⊗ 𝐻)C4 (𝐼 ⊗ 𝐻)C5

C1, C2, C3, C4, C5 over G8

length(𝑈) = 𝑂 (𝑘 )

31

Global Synthesis for O8



Theorem
Let 𝑈 ∈ O8 with lde(𝑈) = 𝑘 . 𝑈 can be represented by 𝑂 (𝑘) generators in G8 using
the global synthesis algorithm.

Proof Sketch. Since 𝑈 ∈ L8 with lde√2 (𝑈) = 2𝑘 , globally synthesizing 𝑈 over F8

yields evenly many 𝐼 ⊗ 𝐻.

Global Synthesis
for L8

𝑈 ∈ O8 𝑈 = C1 (𝐼 ⊗ 𝐻)C2 (𝐼 ⊗ 𝐻)C3 (𝐼 ⊗ 𝐻)C4 (𝐼 ⊗ 𝐻)C5

C1, C2, C3, C4, C5 over G8

length(𝑈) = 𝑂 (𝑘 )

31

Global Synthesis for O8



Theorem
Let 𝑈 ∈ O8 with lde(𝑈) = 𝑘 . 𝑈 can be represented by 𝑂 (𝑘) generators in G8 using
the global synthesis algorithm.

Proof Sketch. Since 𝑈 ∈ L8 with lde√2 (𝑈) = 2𝑘 , globally synthesizing 𝑈 over F8

yields evenly many 𝐼 ⊗ 𝐻.

Global Synthesis
for L8

𝑈 = C1 (𝐼 ⊗ 𝐻)C2 (𝐼 ⊗ 𝐻)C3 (𝐼 ⊗ 𝐻)C4 (𝐼 ⊗ 𝐻)C5

C1, C2, C3, C4, C5 over G8

length(𝑈) = 𝑂 (𝑘 )
𝑈 = C1C′

2 (𝐼 ⊗ 𝐻) (𝐼 ⊗ 𝐻)C3C′
4 (𝐼 ⊗ 𝐻) (𝐼 ⊗ 𝐻)C5

PHG

C′
2, C′

4 over G8

length(C′
2) / length(C2) = 𝑂 (1)

length(C′
4) / length(C4) = 𝑂 (1)

31

Global Synthesis for O8



Theorem
Let 𝑈 ∈ O8 with lde(𝑈) = 𝑘 . 𝑈 can be represented by 𝑂 (𝑘) generators in G8 using
the global synthesis algorithm.

Proof Sketch. Since 𝑈 ∈ L8 with lde√2 (𝑈) = 2𝑘 , globally synthesizing 𝑈 over F8

yields evenly many 𝐼 ⊗ 𝐻.

Global Synthesis
for L8

𝑈 = C1 (𝐼 ⊗ 𝐻)C2 (𝐼 ⊗ 𝐻)C3 (𝐼 ⊗ 𝐻)C4 (𝐼 ⊗ 𝐻)C5

C1, C2, C3, C4, C5 over G8

length(𝑈) = 𝑂 (𝑘 )
𝑈 = C1C′

2 (𝐼 ⊗ 𝐻) (𝐼 ⊗ 𝐻)C3C′
4 (𝐼 ⊗ 𝐻) (𝐼 ⊗ 𝐻)C5

PHG

C′
2, C′

4 over G8

length(C′
2) / length(C2) = 𝑂 (1)

length(C′
4) / length(C4) = 𝑂 (1)

(𝐼 ⊗ 𝐻) (𝐼 ⊗ 𝐻) = 𝐼

𝑈 = C1C′
2C3C′

4C5

□ 31

Global Synthesis for O8



• Explore the complexity-theoretic properties of Toffoli-Hadamard circuits
through the lens of MQCSP4.

• Manifest the advantage of our global synthesis algorithm by scaling it up.

• Present the global synthesis results of O𝑛 and L𝑛 using {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐾} and
{𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐻} directly.

• Design a standalone global synthesis for O8, rather than relying on the
corresponding result for L8 and the commutation of generators.

4Nai-Hui Chia et al. (2021). “Quantum meets the minimum circuit size problem”. In: arXiv
preprint arXiv:2108.03171.

32

Future Work



• Explore the complexity-theoretic properties of Toffoli-Hadamard circuits
through the lens of MQCSP4.

• Manifest the advantage of our global synthesis algorithm by scaling it up.

• Present the global synthesis results of O𝑛 and L𝑛 using {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐾} and
{𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐻} directly.

• Design a standalone global synthesis for O8, rather than relying on the
corresponding result for L8 and the commutation of generators.

4Nai-Hui Chia et al. (2021). “Quantum meets the minimum circuit size problem”. In: arXiv
preprint arXiv:2108.03171.

32

Future Work



• Explore the complexity-theoretic properties of Toffoli-Hadamard circuits
through the lens of MQCSP4.

• Manifest the advantage of our global synthesis algorithm by scaling it up.

• Present the global synthesis results of O𝑛 and L𝑛 using {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐾} and
{𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐻} directly.

• Design a standalone global synthesis for O8, rather than relying on the
corresponding result for L8 and the commutation of generators.

4Nai-Hui Chia et al. (2021). “Quantum meets the minimum circuit size problem”. In: arXiv
preprint arXiv:2108.03171.

32

Future Work



• Explore the complexity-theoretic properties of Toffoli-Hadamard circuits
through the lens of MQCSP4.

• Manifest the advantage of our global synthesis algorithm by scaling it up.

• Present the global synthesis results of O𝑛 and L𝑛 using {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐾} and
{𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐻} directly.

• Design a standalone global synthesis for O8, rather than relying on the
corresponding result for L8 and the commutation of generators.

4Nai-Hui Chia et al. (2021). “Quantum meets the minimum circuit size problem”. In: arXiv
preprint arXiv:2108.03171.

32

Future Work



Thank you!

sarah.li@uwaterloo.ca


