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• Understand environmental decoherence processes and model them properly.

• Use error correction to protect quantum information against decoherence.



Model a Noisy Quantum System
A general quantum error can be modelled by a noisy channel ϵ:

ϵ : ρ −→
∑

AkρA
†
k

.

• ρ is a density matrix. It describes the quantum state of a physical system.

• Ak ’s are Kraus operators:
∑

A†
kAk = I .

Binary Symmetric Channel (BCSp)

IN: b ∈ {0, 1}

OUT:

{
b, prob. 1− p

¬b, prob. p
Assume p ∈ [0, 1], the channel behaves independently for each bit that passes through it.
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Examples of Single-Qubit Errors

Bit Flip X : X |0⟩ = |1⟩ ,X |1⟩ = |0⟩.

Phase Flip Z : Z |0⟩ = |0⟩ ,Z |1⟩ = − |1⟩.

Complete Dephasing : ρ −→ 1/2(ρ+ ZρZ †).

Rotation Rθ : Rθ |0⟩ = |0⟩ ,Rθ |1⟩ = e iθ |1⟩.

X =

[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
.

Y = iXZ =

[
0 −i
i 0

]
.

Rθ =

[
1 0
0 e iθ

]
.

Definition

A single-qubit Pauli error could be one of the following single-qubit errors:

• A bit-flip error X;

• A phase-flip error Z;

• Both a bit-flip and a phase-flip error: Y.
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Suppose Alice wants to communicate to Bob, but their communication channel is noisy.
How can they reduce the noise level?

1. Get a better communication channel (BCS with a smaller p).

2. Use quantum error correction codes.
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3-Bit Repetition Code

1. Alice encodes b ∈ {0, 1} as bbb, and sends the three bits through the channel.

0 −→ 000 1 −→ 111.

2. Bob decodes the three bits he receives by taking the majority count.
The three bits that Bob receives may not be the same.

000 −→


100,The 1st bit is flipped;

010,The 2nd bit is flipped;

001,The 3rd bit is flipped.

111 −→


011,The 1st bit is flipped;

101,The 2nd bit is flipped;

110,The 3rd bit is flipped.

3. If no more than one bit is flipped, this method succeeds because flipping one bit
does not change the majority.
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Obstacles in Quantum Error Correction

• No-cloning theorem forbids the classical repetition strategy.

• Measuring qubits to identify errors would collapse superpositions.

• Need to correct bit flip and phase errors.

• Need to handle continuous rotations, decohering maps, etc.

• Need to correct errors on multiple qubits.

1Daniel Gottesman: Quantum Error Correction and Fault Tolerance (Part 1) - CSSQI 2012.
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Correct a Bit Flip Error

To correct a single bit flip error, we can encode the data as:

0 −→ 000, 1 −→ 111

If there is a single bit flip error, we can correct the state by choosing the majority of the
three bits.

6



Analysis
State that Bob receives Probability Syndrome Correction
(α |100⟩+ β |011⟩) |11⟩ p(1− p)2 11 Flip the 1st qubit
(α |011⟩+ β |100⟩) |11⟩ p2(1− p) 11 Flip the 2nd and 3rd qubits

Suppose Bob measures 11, then he
must either receives

• α |100⟩+ β |011⟩ with
probability p(1− p)2, or

• α |011⟩+ β |100⟩ with
probability p2(1− p).

When errors are rare, one error is
more likely than two errors.
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Repetition Code Corrects up to One Error

Error Probability Success/Fail
0 (1− p)3

1− 3p2 + 2p3
1 3p(1− p)2

2 3p2(1− p)
3p2 − 2p3

3 (1− p)3

8



Summary

Encoding: α |0⟩+ β |1⟩ −→ α |000⟩+ β |111⟩ ≠ (α |0⟩+ β |1⟩)⊗3

Redundancy, not repetition.

Suppose X1 occurred: The encoded state becomes α |100⟩+ β |011⟩.

Detect the error: Measure the error, not the data.
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91Cleve, R. (2021). Introduction to Quantum Information Processing. Retrieved June 6, 2023.

https://cleve.iqc.uwaterloo.ca/qic710/lecture-notes/index.html


Correct a Phase Flip Error

Can we use the same procedure to correct a single-qubit phase flip error?

Encoding: α |0⟩+ β |1⟩ −→ α |000⟩+ β |111⟩

Suppose Z1 occurred: The encoded state becomes α |000⟩ − β |111⟩.
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Correct a Phase Flip Error

Since HZH = X , we can reduce the problem of the phase flip error correction to an
instance of the bit flip error correction.

11



Correct a Single-Qubit Pauli Error

Shor’s Nine-Qubit Code

12



Stabilizer Formalism
Gottesman, D. (1997). Stabilizer codes and quantum error correction. California 
Institute of Technology.



What is a Subspace Code?

• A two-dimensional subspace in a large Hilbert space.

• The basis of this subspace is given by the encoded states |0̄⟩ and |1̄⟩.
• The number of encoded qubit is 1.

Example: Three-qubit code against a bit-flip error

|0̄⟩ = |000⟩ |1̄⟩ = |111⟩

|ψ̄⟩ = α |0̄⟩+ β |1̄⟩ = α |000⟩+ β |111⟩ , α, β ∈ C, |α|2 + |β|2 = 1.

• A 2k-dimensional subspace in a larger space.

• Its basis is given by the encoded states: |0̄ · · · 0̄⟩ , |0̄ · · · 1̄⟩ , . . . , |1̄ · · · 1̄⟩ .
• The number of encoded qubits is k .
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What are the Logical Operators?

• Define logical operators X̄i , Z̄i , 1 ≤ i ≤ k .

• They should have the algebra of the Pauli operators on the encoded qubits.

X̄i Z̄i = −Z̄i X̄i , 1 ≤ i ≤ k

X̄i Z̄j = Z̄j X̄i , 1 ≤ i , j ≤ k , i ̸= j

Z̄ |0̄⟩ = |0̄⟩ , Z̄ |1̄⟩ = − |1̄⟩
X̄ |+̄⟩ = |+̄⟩ , X̄ |−̄⟩ = − |−̄⟩
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Stabilizer Code

Consider three groups of Pauli operators.

1. Pauli group on n qubits: Pn = {i c (
⊗n

i=1 Pi) ; Pi ∈ {X ,Y ,Z , I}, 0 ≤ c ≤ 3}.

1Gottesman, D. (1997). Stabilizer codes and quantum error correction. California Institute of Technology.
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2. Stabilizer group: S = ⟨M1,M2, . . . ,Mn−k⟩, −I /∈ S. S ⊂ Pn. S Abelian.

3. Centralizer of S: N (S) = {U ∈ Pn; [U ,M] = 0, ∀M ∈ S}.

Definition

Stabilizer codes are a class of
quantum error-correcting codes. Its
code space C is the joint +1
eigenspace of S.
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Code Space

|ψ⟩ is called a codeword in C, where

C := {n-qubit state |ψ⟩ ;M |ψ⟩ = |ψ⟩ ,∀M ∈ S}

There are three important parameters for a stabilizer code: [[n, k , d ]].

• n is the number of physical qubits.

• k is the number of logical (or encoded) qubits.

• d is the code distance.

Example

Consider S = ⟨XX ,ZZ ⟩ on two qubits. Then C =

{
1√
2
(|00⟩+ |11⟩)

}
.

16
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Logical Operators

Consider the centralizer of S,

N (S) := {U ∈ Pn; [U ,M] = 0,∀M ∈ S}.

• Since S is Abelian, S ⊂ N (S). They act trivially on |ψ⟩.

• X1,Z1, . . . ,Xk ,Zk ∈ N (S)/S, up to the generators of S.
They are anticommuting Pauli pairs acting non-trivially on |ψ⟩.

• All other operators in Pn anti-commute with at least one element in S and map a
codeword |ψ⟩ onto a state outside the code space C.

17
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Fundamental Theorem of Stabilizer Theory

Theorem

If S ⊂ Pn has m generators, then C is a 2k dimensional subspace of (C2)⊗n, k = n −m.

• S is maximal when m = n. S fixes a 20 = 1 dimensional subspace, i.e. a quantum
state, up to scalar factor.

• More generally, we think of non-maximal stabiliser groups as a description for the
embedding of k = n −m “logical” qubits into a space of n “physical” qubits.

Example: Four-qubit code [[4, 2, 2]]

S = ⟨XXXX ,ZZZZ ⟩

• What is the dimension of the code space?

18
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embedding of k = n −m “logical” qubits into a space of n “physical” qubits.

Example: Four-qubit code [[4, 2, 2]]

S = ⟨XXXX ,ZZZZ ⟩

• What is the dimension of the code space?

18



Code Distance

Definition

Let d be the distance of a stabilizer code C(S), |P | denotes the weight of P ∈ Pn, the
number of physical qubits on which P acts nontrivially. Then

d := min
P∈N (S)/S

|P |.

The code distance is the minimum weight of any logical operator.

Example: Four-qubit code [[4, 2, 2]]

S = ⟨XXXX ,ZZZZ ⟩

• Find pairs of mutually anti-commuting Paulis which commute with XXXX , ZZZZ .

• What is the code distance?
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Detectable Errors

Definition

∀A,B ∈ Pn,
[A,B] = AB − BA {A,B} = AB + BA.

[A,B] = 0, {A,B} = 0 denote when A and B commute, anticommute respectively.

Consider E ∈ Pn acting on the encoded state |ψ̄⟩. There are two cases.

E is an undetectable error: When E ∈ N (S), [E ,M] = 0, ∀M ∈ S.
• E ∈ S, E is trivial.
• E ∈ N (S) \ S, E is a logical operator.BAD!
∗ E maps a codeword to another codeword.

E is an detectable error: When E /∈ N (S), ∃M ∈ S s.t. {E ,M} = 0.
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Detectable Errors Cont.

Lemma

A stabilizer code of distance d can detect all Pauli errors of weight less than d (as long
as they are not elements in S).

When a Pauli error has weight greater than or equal to d , it may or may not be
detected.

Two questions to think about:

• E and F have the same error syndrome iff E †F ∈ N (S).

• A code of distance d = 2t + 1 can correct any error of weight t.
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Fault-tolerant Technique: Transversality

•
=

• Z

Z X X Z

X •
=

• X

X X X

Definition

A transversal logical operator is NOT implemented by any multi-qubit physical
operation acting on the same code block.

• Transversality prevents any errors from spreading within a block, so a single physical
error cannot cause a whole block of codes to go bad.

3Gottesman, D. (2000). Fault-tolerant quantum computation with local gates. Journal of Modern Optics,
47(2-3), 333-345.
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2D Surface Code

• A family of stabilizer codes defined on a
2D lattice of qubits.

• Pros: high error threshold and the planar
layout of physical qubits. Each physical
qubit only interacts with its nearest
neighbours.

• Cons: the available transversal logical
gates are limited.

dBravyi, S. B. & Kitaev, A. Y. (1998). Quantum codes
on a lattice with boundary. arXiv preprint quant-ph/9811052
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The Smallest Interesting Surface Code.

24
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Fault-tolerant Protocols for Surface Codes

Measurement-based schemes for performing logical operations in surface code.

Lattice surgery: implement a multi-qubit logical CNOT gate.

Code deformation: implement a single-qubit logical H gate.

Gauge fixing: add/remove operators into/from the stabilizer group.

Magic state distillation: implement the non-Clifford T gate.
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Lattice Surgery

• Three surface code patches to
perform a lattice surgery for a
fault-tolerant implementation of
the logical CNOT gate.

• Control (C) and target (T)
surfaces interact by merging and
splitting with the intermediate
surface (INT).

eHorsman, C., Fowler, A. G., Devitt, S.
& Van Meter, R. (2012). Surface code
quantum computing by lattice surgery. New
Journal of Physics, 14(12), 123011.



Code Deformation

• Fault-tolerant procedure for rotating 
a surface code by 90 degrees and 
reflecting it about the x axis.

• Realizing a logical H gate.

e Bombín, H. & Martin-Delgado, M. A. (2009). 
Quantum measurements and gates by code 
deformation. Journal of Physics A: Mathematical and 
Theoretical, 42(9), 095302.

f Vuillot, C., Lao, L., Criger, B., Almudéver, C. G., Bertels, 
K. \& Terhal, B. M. (2019). Code deformation and 
lattice surgery are gauge fixing. New Journal of 
Physics, 21(3), 033028.
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Gauge Fixing
• Different gauge fixing operations result in different 

stabilizer groups.
• This method is used to switch between the Steane code 

and the quantum Reed-Muller code.
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15-qubit Quantum Reed-Muller Code
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15-qubit Quantum Reed-Muller Code

7-qubit Steane Code

Gauge Fixing
• Different gauge fixing operations result in different 

stabilizer groups.
• This method is used to switch between the Steane code 

and the quantum Reed-Muller code.



Switch between Steane Code and Quantum Reed-Muller Codes

[4] Anderson, J. T., 
Duclos-Cianci, G., & 
Poulin, D. (2014). 
Fault-tolerant 
conversion between 
the steane and reed-
muller quantum 
codes. Physical 
review letters, 
113(8), 080501. 

[5] Quan, D. X., Zhu, 
L. L., Pei, C. X., & 
Sanders, B. C. (2018). 
Fault-tolerant 
conversion between 
adjacent Reed–
Muller quantum 
codes based on 
gauge fixing. Journal 
of Physics A: 
Mathematical and 
Theoretical, 51(11), 
115305.

Subsystem Code 
Gauge Fixing

[6] Paetznick, A., & 
Reichardt, B. W. (2013). 
Universal fault-tolerant 
quantum computation with 
only transversal gates and 
error correction. Physical 
review letters, 111(9), 
090505.

[7] Vuillot, C., Lao, L., Criger, 
B., Almud´ever, C. G., 
Bertels, K., & Terhal, B. M. 
(2019). Code deformation 
and lattice surgery are 
gauge fixing. New Journal of 
Physics, 21(3), 033028.



Magic State Distillation
• Magic state distillation implements a non-Clifford logical T gate.

• It is estimated to have a large resource overhead.

8O’Gorman, J., & Campbell, E. T. (2017). Quantum computation with realistic magic-state factories.
Physical Review A, 95(3), 032338.

9Bomb́ın, H. (2015). Gauge color codes: optimal transversal gates and gauge fixing in topological stabilizer
codes. New Journal of Physics, 17(8), 083002.



Conclusion

1. The Shor’s J9, 1, 3K code corrects both the X- and Z-type errors simultaneously. Its
construction can be thought of as concatenating three-qubit repetition codes.

2. Stabilizer theory is a mathematical framework for studying and designing quantum
error-correcting codes.

3. Fault tolerance can be achieved by using transversal gates.

4. Surface codes are a family of topological stabilizer codes. Measurement-based
protocols are used to realize different logical operations.
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Thanks!


