Quantum Error Correction and Fault Tolerance: Surface Codes

Sarah Meng Li

Institute for Quantum Computing, Department of Combinatorics and Optimization, University of Waterloo

USEQIP 2023

Towards a Fully Operational and Scalable

Quantum Computer

The loss of quantum coherence.

- The loss of quantum coherence.
 - the loss of information from a system into the environment.

- The loss of quantum coherence.
 - the loss of information from a system into the environment.
- Present in the transmission, processing, or storage of quantum information.

Towards a Fully Operational and Scalable

Quantum Computer

Understand environmental decoherence processes and model them properly.

Towards a Fully Operational and Scalable

Quantum Computer

Understand environmental decoherence processes and model them properly.

Use error correction to protect quantum information against decoherence.

A general quantum error can be modelled by a noisy channel ϵ :

$$\epsilon:\rho\longrightarrow\sum A_k\rho A_k^{\dagger}$$

1

A general quantum error can be modelled by a noisy channel ϵ :

$$\epsilon: \rho \longrightarrow \sum A_k \rho A_k^{\dagger}$$

1

• ρ is a density matrix. It describes the quantum state of a physical system.

A general quantum error can be modelled by a noisy channel ϵ :

$$\epsilon: \rho \longrightarrow \sum A_k \rho A_k^{\dagger}$$

1

• ρ is a density matrix. It describes the quantum state of a physical system.

• A_k 's are Kraus operators: $\sum A_k^{\dagger} A_k = I$.

A general quantum error can be modelled by a noisy channel ϵ :

$$\epsilon: \rho \longrightarrow \sum A_k \rho A_k^{\dagger}$$

• ρ is a density matrix. It describes the quantum state of a physical system.

•
$$A_k$$
's are Kraus operators: $\sum A_k^{\dagger} A_k = I$.

Binary Symmetric Channel (BCS_p)

Assume $p \in [0, 1]$, the channel behaves independently for each bit that passes through it.

Examples of Single-Qubit Errors

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

$$Y = iXZ = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}.$$

$$R_ heta = egin{bmatrix} 1 & 0 \ 0 & e^{i heta} \end{bmatrix}.$$

Bit Flip
$$X : X |0\rangle = |1\rangle, X |1\rangle = |0\rangle$$

Phase Flip Z : $Z |0\rangle = |0\rangle$, $Z |1\rangle = -|1\rangle$.

 $\mbox{Complete Dephasing} \ : \ \rho \longrightarrow 1/2(\rho + Z\rho Z^{\dagger}).$

Rotation
$$R_{ heta}$$
 : $R_{ heta} \ket{0} = \ket{0}$, $R_{ heta} \ket{1} = e^{i\theta} \ket{1}$.

Examples of Single-Qubit Errors

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
, $Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

$$Y = iXZ = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

$$R_ heta = egin{bmatrix} 1 & 0 \ 0 & e^{i heta} \end{bmatrix}.$$

Bit Flip $X : X |0\rangle = |1\rangle, X |1\rangle = |0\rangle.$

Phase Flip Z : $Z \ket{0} = \ket{0}, Z \ket{1} = -\ket{1}$.

Complete Dephasing : $\rho \longrightarrow 1/2(\rho + Z\rho Z^{\dagger})$.

$$\text{Rotation } R_{\theta} \, : \, R_{\theta} \ket{0} = \ket{0}, R_{\theta} \ket{1} = e^{i\theta} \ket{1}.$$

Definition

A single-qubit Pauli error could be one of the following single-qubit errors:

- A bit-flip error X;
- A phase-flip error Z;
- Both a bit-flip and a phase-flip error: Y.

Suppose Alice wants to communicate to Bob, but their communication channel is noisy. How can they **reduce the noise level**?

Suppose Alice wants to communicate to Bob, but their communication channel is noisy. How can they **reduce the noise level**?

1. Get a better communication channel (BCS with a smaller p).

Suppose Alice wants to communicate to Bob, but their communication channel is noisy. How can they **reduce the noise level**?

- 1. Get a better communication channel (BCS with a smaller p).
- 2. Use quantum error correction codes.

3-Bit Repetition Code

1. Alice encodes $b \in \{0, 1\}$ as *bbb*, and sends the three bits through the channel.

```
0 \longrightarrow 000 \qquad 1 \longrightarrow 111.
```

2. Bob decodes the three bits he receives by taking the majority count. The three bits that Bob receives may not be the same.

 $000 \longrightarrow \begin{cases} 100, \text{ The 1st bit is flipped;} \\ 010, \text{ The 2nd bit is flipped;} \\ 001, \text{ The 3rd bit is flipped.} \end{cases} \qquad 111 \longrightarrow \begin{cases} 011, \text{ The 1st bit is flipped;} \\ 101, \text{ The 2nd bit is flipped;} \\ 110, \text{ The 3rd bit is flipped.} \end{cases}$

3. If no more than one bit is flipped, this method succeeds because flipping one bit does not change the majority.

Obstacles in Quantum Error Correction

- No-cloning theorem forbids the classical repetition strategy.
- Measuring qubits to identify errors would collapse superpositions.
- Need to correct bit flip and phase errors.
- Need to handle continuous rotations, decohering maps, etc.
- Need to correct errors on multiple qubits.

¹Daniel Gottesman: Quantum Error Correction and Fault Tolerance (Part 1) - CSSQI 2012.

Correct a Bit Flip Error

To correct a single bit flip error, we can encode the data as:

 $0 \longrightarrow 000, 1 \longrightarrow 111$

If there is a single bit flip error, we can correct the state by choosing the majority of the three bits.

Analysis

State that Bob receives $(\alpha |100\rangle + \beta |011\rangle) |11\rangle \qquad p(1-p)^2 \qquad 11$ $(\alpha |011\rangle + \beta |100\rangle) |11\rangle \qquad p^2(1-p) \qquad 11$

Probability

Syndrome Correction Flip the 1st qubit Flip the 2nd and 3rd gubits

Analysis

State that Bob receivesProbabili $(\alpha |100\rangle + \beta |011\rangle) |11\rangle$ $p(1-p)^2$ $(\alpha |011\rangle + \beta |100\rangle) |11\rangle$ $p^2(1-p)$

ProbabilitySyndrome $p(1-p)^2$ 11 $p^2(1-p)$ 11

e Correction Flip the 1st qubit Flip the 2nd and 3rd qubits

Suppose Bob measures 11, then he must either receives

- $\alpha |100\rangle + \beta |011\rangle$ with probability $p(1-p)^2$, or
- $\alpha |011\rangle + \beta |100\rangle$ with probability $p^2(1-p)$.

When errors are rare, one error is more likely than two errors.

Repetition Code Corrects up to One Error

		1	1 - 3p	² + 2 ₁	o ³ Suce	cess			
							$3p^2 -$	$2p^3 F$	ail
Probability	Success/Fail			\backslash					
${(1-p)^3\over 3p(1-p)^2}$	$1 - 3p^2 + 2p^3$	-0-5							
$\frac{3p^2(1-p)}{(1-p)^3}$	$3p^2 - 2p^3$								
						\backslash			
		0			0.5			1	8

Encoding: $\alpha |0\rangle + \beta |1\rangle \longrightarrow \alpha |000\rangle + \beta |111\rangle \neq (\alpha |0\rangle + \beta |1\rangle)^{\otimes 3}$

Encoding: $\alpha |0\rangle + \beta |1\rangle \longrightarrow \alpha |000\rangle + \beta |111\rangle \neq (\alpha |0\rangle + \beta |1\rangle)^{\otimes 3}$

Redundancy, not repetition.

Encoding: $\alpha |0\rangle + \beta |1\rangle \longrightarrow \alpha |000\rangle + \beta |111\rangle \neq (\alpha |0\rangle + \beta |1\rangle)^{\otimes 3}$

Redundancy, not repetition.

Suppose X_1 occurred: The encoded state becomes $\alpha |100\rangle + \beta |011\rangle$.

 $\begin{array}{ll} \mathsf{Encoding:} & \alpha \left| \mathbf{0} \right\rangle + \beta \left| \mathbf{1} \right\rangle \longrightarrow \alpha \left| \mathbf{000} \right\rangle + \beta \left| \mathbf{111} \right\rangle \neq \left(\alpha \left| \mathbf{0} \right\rangle + \beta \left| \mathbf{1} \right\rangle \right)^{\otimes \mathbf{3}} \end{array}$

Redundancy, not repetition.

Suppose X_1 occurred: The encoded state becomes $\alpha |100\rangle + \beta |011\rangle$.

Detect the error: Measure the error, not the data.

¹Cleve, R. (2021). Introduction to Quantum Information Processing. Retrieved June 6, 2023.

Correct a Phase Flip Error

Can we use the same procedure to correct a single-qubit phase flip error?

Encoding: $\alpha |0\rangle + \beta |1\rangle \longrightarrow \alpha |000\rangle + \beta |111\rangle$

Suppose Z_1 occurred: The encoded state becomes $\alpha |000\rangle - \beta |111\rangle$.

Correct a Phase Flip Error

Can we use the same procedure to correct a single-qubit phase flip error? Suppose Z_1 occurred: The encoded state becomes $\alpha |000\rangle - \beta |111\rangle$.

Correct a Phase Flip Error

Since HZH = X, we can reduce the problem of the phase flip error correction to an instance of the bit flip error correction.

Correct a Single-Qubit Pauli Error

Shor's Nine-Qubit Code

Stabilizer Formalism

Gottesman, D. (1997). Stabilizer codes and quantum error correction. California Institute of Technology.

What is a Subspace Code?

• A two-dimensional subspace in a large Hilbert space.

What is a Subspace Code?

- A two-dimensional subspace in a large Hilbert space.
- The basis of this subspace is given by the encoded states $|\bar{0}\rangle$ and $|\bar{1}\rangle$.
- A two-dimensional subspace in a large Hilbert space.
- The basis of this subspace is given by the encoded states $|\bar{0}\rangle$ and $|\bar{1}\rangle$.
- The number of encoded qubit is 1.

- A two-dimensional subspace in a large Hilbert space.
- The basis of this subspace is given by the encoded states $|\bar{0}\rangle$ and $|\bar{1}\rangle.$
- The number of encoded qubit is 1.

Example: Three-qubit code against a bit-flip error

$$\begin{split} & |\bar{0}\rangle = |000\rangle \qquad |\bar{1}\rangle = |111\rangle \\ \bar{\psi}\rangle = \alpha |\bar{0}\rangle + \beta |\bar{1}\rangle = \alpha |000\rangle + \beta |111\rangle, \quad \alpha, \beta \in \mathbb{C}, \quad |\alpha|^2 + |\beta|^2 = 1. \end{split}$$

- A two-dimensional subspace in a large Hilbert space.
- The basis of this subspace is given by the encoded states $|\bar{0}\rangle$ and $|\bar{1}\rangle$.
- The number of encoded qubit is 1.

Example: Three-qubit code against a bit-flip error
$$\begin{split} & |\bar{0}\rangle = |000\rangle \qquad |\bar{1}\rangle = |111\rangle \\ & |\bar{\psi}\rangle = \alpha \, |\bar{0}\rangle + \beta \, |\bar{1}\rangle = \alpha \, |000\rangle + \beta \, |111\rangle \,, \quad \alpha, \beta \in \mathbb{C}, \quad |\alpha|^2 + |\beta|^2 = 1. \end{split}$$

• A 2^k-dimensional subspace in a larger space.

- A two-dimensional subspace in a large Hilbert space.
- The basis of this subspace is given by the encoded states $|\bar{0}\rangle$ and $|\bar{1}\rangle$.
- The number of encoded qubit is 1.

Example: Three-qubit code against a bit-flip error
$$\begin{split} & |\bar{0}\rangle = |000\rangle \qquad |\bar{1}\rangle = |111\rangle \\ & |\bar{\psi}\rangle = \alpha \, |\bar{0}\rangle + \beta \, |\bar{1}\rangle = \alpha \, |000\rangle + \beta \, |111\rangle \,, \quad \alpha, \beta \in \mathbb{C}, \quad |\alpha|^2 + |\beta|^2 = 1. \end{split}$$

- A 2^k-dimensional subspace in a larger space.
- Its basis is given by the encoded states: $|\overline{0}\cdots\overline{0}\rangle$, $|\overline{0}\cdots\overline{1}\rangle$, ..., $|\overline{1}\cdots\overline{1}\rangle$.

- A two-dimensional subspace in a large Hilbert space.
- The basis of this subspace is given by the encoded states $|\bar{0}\rangle$ and $|\bar{1}\rangle$.
- The number of encoded qubit is 1.

Example: Three-qubit code against a bit-flip error $|\bar{0}\rangle = |000\rangle \qquad |\bar{1}\rangle = |111\rangle$ $|\bar{\psi}\rangle = \alpha |\bar{0}\rangle + \beta |\bar{1}\rangle = \alpha |000\rangle + \beta |111\rangle, \quad \alpha, \beta \in \mathbb{C}, \quad |\alpha|^2 + |\beta|^2 = 1.$

- A 2^k-dimensional subspace in a larger space.
- Its basis is given by the encoded states: $|\overline{0}\cdots\overline{0}\rangle$, $|\overline{0}\cdots\overline{1}\rangle$, ..., $|\overline{1}\cdots\overline{1}\rangle$.
- The number of encoded qubits is *k*.

What are the Logical Operators?

• Define logical operators $\bar{X}_i, \bar{Z}_i, 1 \leq i \leq k$.

What are the Logical Operators?

- Define logical operators $\bar{X}_i, \bar{Z}_i, 1 \leq i \leq k$.
- They should have the algebra of the Pauli operators on the encoded qubits.

What are the Logical Operators?

- Define logical operators $\bar{X}_i, \bar{Z}_i, 1 \leq i \leq k$.
- They should have the algebra of the Pauli operators on the encoded qubits.

$$egin{aligned} ar{X}_iar{Z}_i &= -ar{Z}_iar{X}_i, \quad 1\leq i\leq k \ ar{X}_iar{Z}_j &= ar{Z}_jar{X}_i, \quad 1\leq i,j\leq k, \quad i
eq j \ ar{Z} &|ar{0}
angle &= |ar{0}
angle, \quad ar{Z} &|ar{1}
angle &= -|ar{1}
angle \ ar{X} &|ar{+}
angle &= |ar{+}
angle, \quad ar{X} &|ar{-}
angle &= -|ar{-}
angle \end{aligned}$$

Stabilizer Code

Consider three groups of Pauli operators.

1. Pauli group on *n* qubits: $\mathcal{P}_n = \{i^c (\bigotimes_{i=1}^n P_i); P_i \in \{X, Y, Z, I\}, 0 \le c \le 3\}.$

¹Gottesman, D. (1997). Stabilizer codes and quantum error correction. California Institute of Technology.

Stabilizer Code

Consider three groups of Pauli operators.

- 1. Pauli group on *n* qubits: $\mathcal{P}_n = \{i^c (\bigotimes_{i=1}^n P_i); P_i \in \{X, Y, Z, I\}, 0 \le c \le 3\}.$
- 2. Stabilizer group: $S = \langle M_1, M_2, \dots, M_{n-k} \rangle$, $-I \notin S$. $S \subset \mathcal{P}_n$. S Abelian.

²Gottesman, D. (1997). Stabilizer codes and quantum error correction. California Institute of Technology.

Stabilizer Code

Consider three groups of Pauli operators.

- 1. Pauli group on *n* qubits: $\mathcal{P}_n = \{i^c (\bigotimes_{i=1}^n P_i); P_i \in \{X, Y, Z, I\}, 0 \le c \le 3\}.$
- 2. Stabilizer group: $S = \langle M_1, M_2, \dots, M_{n-k} \rangle$, $-I \notin S$. $S \subset \mathcal{P}_n$. S Abelian.
- 3. Centralizer of $S: \mathcal{N}(S) = \{ U \in \mathcal{P}_n; [U, M] = 0, \forall M \in S \}.$

Definition

Stabilizer codes are a class of quantum error-correcting codes. Its code space C is the joint +1 eigenspace of S.

²Gottesman, D. (1997). Stabilizer codes and quantum error correction. California Institute of Technology.

 $|\overline{\psi}
angle$ is called a *codeword* in \mathcal{C} , where

$$\mathcal{C}\coloneqq \{\textit{n} ext{-qubit state}\ket{\overline{\psi}}; \textit{M}\ket{\overline{\psi}} = \ket{\overline{\psi}}, orall \textit{M}\in\mathcal{S}\}$$

 $|\overline{\psi}
angle$ is called a *codeword* in \mathcal{C} , where

$$\mathcal{C} \coloneqq \{\textit{n-qubit state} \ket{\overline{\psi}}; \textit{M} \ket{\overline{\psi}} = \ket{\overline{\psi}}, \forall \textit{M} \in \mathcal{S} \}$$

There are three important parameters for a stabilizer code: [[n, k, d]].

• *n* is the number of physical qubits.

 $|\overline{\psi}
angle$ is called a *codeword* in \mathcal{C} , where

$$\mathcal{C} \coloneqq \{\textit{n-qubit state} \ket{\overline{\psi}}; \textit{M} \ket{\overline{\psi}} = \ket{\overline{\psi}}, \forall \textit{M} \in \mathcal{S} \}$$

There are three important parameters for a stabilizer code: [[n, k, d]].

- *n* is the number of physical qubits.
- k is the number of logical (or encoded) qubits.

 $|\overline{\psi}
angle$ is called a *codeword* in \mathcal{C} , where

$$\mathcal{C} \coloneqq \{\textit{n-qubit state} \ket{\overline{\psi}}; \textit{M} \ket{\overline{\psi}} = \ket{\overline{\psi}}, \forall \textit{M} \in \mathcal{S} \}$$

There are three important parameters for a stabilizer code: [[n, k, d]].

- *n* is the number of physical qubits.
- k is the number of logical (or encoded) qubits.
- *d* is the code distance.

 $|\overline{\psi}
angle$ is called a *codeword* in ${\cal C}$, where

$$\mathcal{C} \coloneqq \{\textit{n-qubit state} \ket{\overline{\psi}}; \textit{M} \ket{\overline{\psi}} = \ket{\overline{\psi}}, \forall \textit{M} \in \mathcal{S} \}$$

There are three important parameters for a stabilizer code: [[n, k, d]].

- *n* is the number of physical qubits.
- k is the number of logical (or encoded) qubits.
- *d* is the code distance.

Example

Consider
$$S = \langle XX, ZZ \rangle$$
 on two qubits. Then $C = \left\{ \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle \right) \right\}$.

Consider the centralizer of \mathcal{S} ,

$$\mathcal{N}(\mathcal{S}) \coloneqq \{ U \in \mathcal{P}_n; [U, M] = 0, \forall M \in \mathcal{S} \}.$$

Consider the centralizer of \mathcal{S} ,

$$\mathcal{N}(\mathcal{S}) \coloneqq \{ U \in \mathcal{P}_n; [U, M] = 0, \forall M \in \mathcal{S} \}.$$

• Since S is Abelian, $S \subset \mathcal{N}(S)$. They act trivially on $|\overline{\psi}\rangle$.

Consider the centralizer of \mathcal{S} ,

$$\mathcal{N}(\mathcal{S}) \coloneqq \{ U \in \mathcal{P}_n; [U, M] = 0, \forall M \in \mathcal{S} \}.$$

- Since S is Abelian, $S \subset \mathcal{N}(S)$. They act trivially on $|\overline{\psi}\rangle$.
- $\overline{X_1}, \overline{Z_1}, \dots, \overline{X_k}, \overline{Z_k} \in \mathcal{N}(\mathcal{S})/\mathcal{S}$, up to the generators of \mathcal{S} .

They are anticommuting Pauli pairs acting non-trivially on $|\overline{\psi}\rangle$.

Consider the centralizer of \mathcal{S} ,

$$\mathcal{N}(\mathcal{S}) \coloneqq \{ U \in \mathcal{P}_n; [U, M] = 0, \forall M \in \mathcal{S} \}.$$

- Since S is Abelian, $S \subset \mathcal{N}(S)$. They act trivially on $|\overline{\psi}\rangle$.
- X
 ₁, Z
 ₁, ..., X
 _k, Z
 _k ∈ N(S)/S, up to the generators of S.
 They are anticommuting Pauli pairs acting non-trivially on |ψ⟩.
- All other operators in P_n anti-commute with at least one element in S and map a codeword |ψ̄⟩ onto a state outside the code space C.

Theorem

If $S \subset \mathcal{P}_n$ has m generators, then \mathcal{C} is a 2^k dimensional subspace of $(\mathbb{C}^2)^{\otimes n}$, k = n - m.

Theorem

If $S \subset \mathcal{P}_n$ has m generators, then \mathcal{C} is a 2^k dimensional subspace of $(\mathbb{C}^2)^{\otimes n}$, k = n - m.

• S is maximal when m = n. S fixes a $2^0 = 1$ dimensional subspace, i.e. a quantum state, up to scalar factor.

Theorem

If $S \subset \mathcal{P}_n$ has m generators, then \mathcal{C} is a 2^k dimensional subspace of $(\mathbb{C}^2)^{\otimes n}$, k = n - m.

- S is maximal when m = n. S fixes a $2^0 = 1$ dimensional subspace, i.e. a quantum state, up to scalar factor.
- More generally, we think of non-maximal stabiliser groups as a description for the embedding of k = n m "logical" qubits into a space of n "physical" qubits.

Theorem

If $S \subset \mathcal{P}_n$ has m generators, then \mathcal{C} is a 2^k dimensional subspace of $(\mathbb{C}^2)^{\otimes n}$, k = n - m.

- S is maximal when m = n. S fixes a $2^0 = 1$ dimensional subspace, i.e. a quantum state, up to scalar factor.
- More generally, we think of non-maximal stabiliser groups as a description for the embedding of k = n m "logical" qubits into a space of n "physical" qubits.

Example: Four-qubit code [[4,2,2]]

$$\mathcal{S} = \langle XXXX, ZZZZ \rangle$$

• What is the dimension of the code space?

Code Distance

Definition

Let *d* be the distance of a stabilizer code C(S), |P| denotes the weight of $P \in \mathcal{P}_n$, the number of physical qubits on which *P* acts nontrivially. Then

$$d := \min_{P \in \mathcal{N}(\mathcal{S})/\mathcal{S}} |P|.$$

The code distance is the **minimum weight** of any logical operator.

Code Distance

Definition

Let *d* be the distance of a stabilizer code C(S), |P| denotes the weight of $P \in \mathcal{P}_n$, the number of physical qubits on which *P* acts nontrivially. Then

$$d \coloneqq \min_{P \in \mathcal{N}(\mathcal{S})/\mathcal{S}} |P|.$$

The code distance is the **minimum weight** of any logical operator.

Example: Four-qubit code [[4, 2, 2]]

$$S = \langle XXXX, ZZZZ \rangle$$

- Find pairs of mutually anti-commuting Paulis which commute with XXXX, ZZZZ.
- What is the code distance?

Definition

 $\forall A, B \in \mathcal{P}_n$,

$$[A, B] = AB - BA \qquad \{A, B\} = AB + BA.$$

[A, B] = 0, $\{A, B\} = 0$ denote when A and B commute, anticommute respectively.

Definition

 $\forall A, B \in \mathcal{P}_n$,

$$[A,B] = AB - BA \qquad \{A,B\} = AB + BA.$$

 $[A, B] = 0, \{A, B\} = 0$ denote when A and B commute, anticommute respectively.

Consider $E \in \mathcal{P}_n$ acting on the encoded state $|\bar{\psi}\rangle$. There are two cases.

Definition

 $\forall A, B \in \mathcal{P}_n$,

$$[A,B] = AB - BA \qquad \{A,B\} = AB + BA.$$

[A, B] = 0, $\{A, B\} = 0$ denote when A and B commute, anticommute respectively.

Consider $E \in \mathcal{P}_n$ acting on the encoded state $|\bar{\psi}\rangle$. There are two cases. E is an undetectable error: When $E \in \mathcal{N}(S)$, [E, M] = 0, $\forall M \in S$.

- $E \in S$, E is trivial.
- $E \in \mathcal{N}(S) \setminus S$, E is a logical operator.**BAD!**

* E maps a codeword to another codeword.

Definition

 $\forall A, B \in \mathcal{P}_n$,

$$[A,B] = AB - BA \qquad \{A,B\} = AB + BA.$$

[A, B] = 0, $\{A, B\} = 0$ denote when A and B commute, anticommute respectively.

Consider $E \in \mathcal{P}_n$ acting on the encoded state $|\bar{\psi}\rangle$. There are two cases. E is an undetectable error: When $E \in \mathcal{N}(S)$, [E, M] = 0, $\forall M \in S$.

- $E \in S$, E is trivial.
- $E \in \mathcal{N}(S) \setminus S$, E is a logical operator.**BAD!**
- $\ast\,$ E maps a codeword to another codeword.

E is an detectable error: When $E \notin \mathcal{N}(S)$, $\exists M \in S$ s.t. $\{E, M\} = 0$.

Detectable Errors Cont.

Lemma

A stabilizer code of distance d can detect all Pauli errors of weight less than d (as long as they are not elements in S).

When a Pauli error has weight greater than or equal to d, it may or may not be detected.

Detectable Errors Cont.

Lemma

A stabilizer code of distance d can detect all Pauli errors of weight less than d (as long as they are not elements in S).

When a Pauli error has weight greater than or equal to d, it may or may not be detected.

Two questions to think about:

Detectable Errors Cont.

Lemma

A stabilizer code of distance d can detect all Pauli errors of weight less than d (as long as they are not elements in S).

When a Pauli error has weight greater than or equal to d, it may or may not be detected.

Two questions to think about:

- *E* and *F* have the same error syndrome iff $E^{\dagger}F \in \mathcal{N}(S)$.
- A code of distance d = 2t + 1 can correct any error of weight t.

Fault-tolerant Technique: Transversality

 $^{^{3}}$ Gottesman, D. (2000). Fault-tolerant quantum computation with local gates. Journal of Modern Optics, 47(2-3), 333-345.

Fault-tolerant Technique: Transversality

Definition

A transversal logical operator is **NOT** implemented by any multi-qubit physical operation acting on the same code block.

³Gottesman, D. (2000). Fault-tolerant quantum computation with local gates. Journal of Modern Optics, 47(2-3), 333-345.

Fault-tolerant Technique: Transversality

Definition

A transversal logical operator is **NOT** implemented by any multi-qubit physical operation acting on the same code block.

• Transversality prevents any errors from spreading within a block, so a single physical error cannot cause a whole block of codes to go bad.

³Gottesman, D. (2000). Fault-tolerant quantum computation with local gates. Journal of Modern Optics, 47(2-3), 333-345.

2D Surface Code

- A family of stabilizer codes defined on a 2D lattice of qubits.
- Pros: high error threshold and the planar layout of physical qubits. Each physical qubit only interacts with its nearest neighbours.
- Cons: the available transversal logical gates are limited.

^dBravyi, S. B. & Kitaev, A. Y. (1998). Quantum codes on a lattice with boundary. arXiv preprint quant-ph/9811052

The Smallest Interesting Surface Code.

Welcome to the error correction zoo

Jump to > Linear binary, Additive qary, RS, RM, LDPC, Polar, Rank-metric, STC, Stabilizer, CSS, Good QLDPC, Kitaev surface, Color, Topological, Holographic, EAQECC, GKP, Cat

Classical Domain ► Binary Kingdom, Galois-field Kingdom, Matrix Kingdom, Lattice Kingdom, Spherical Kingdom, Ring Kingdom, Group Kingdom Quantum Domain ► Qubit Kingdom, Modular-qudit Kingdom, Galois-qudit Kingdom, Bosonic Kingdom, Fermionic Kingdom, Spin Kingdom, Group Kingdom, Category Kingdom Code lists ► Approximate quantum codes, Binary linear codes, Quantum CSS codes, Codes with notable decoders, Dynamically generated quantum codes, Asymptotically good QLDPC codes, Hamiltonian-based codes, Holographic codes, Quantum codes based on homological products, LDPC codes, MDS codes, Perfect codes, *q*-ary linear codes, Quantum LDPC codes, Quantum codes with code capacity thresholds, Quantum codes with fault-tolerant gadgets ... (see all)

Your Random Code Pick: Tanner code

Binary linear code defined on edges on a regular graph G such that each subsequence of bits corresponding to edges in the neighborhood any vertex belong to some \textit{short} binary linear code C_0 . Expansion properties of the underlying graph can yield efficient decoding algorithms. More ...

Home Page

Code graph Code lists All codes Glossary of concepts

CSS

More

Add new code Additional resources Team About

Stats at a glance: 275 code entries, 15 kingdoms, 2 domains, 72 classical codes, 124 quantum codes, 79 abstract property codes, 27 topological codes, 33 CSS codes, 44 quantum LDPC codes, and 26 bosonic codes.

go → refresh

Measurement-based schemes for performing logical operations in surface code.

Measurement-based schemes for performing logical operations in surface code.

Lattice surgery: implement a multi-qubit logical CNOT gate.

- Measurement-based schemes for performing logical operations in surface code.
- Lattice surgery: implement a multi-qubit logical CNOT gate.
- Code deformation: implement a single-qubit logical H gate.

- Measurement-based schemes for performing logical operations in surface code.
- Lattice surgery: implement a multi-qubit logical CNOT gate.
- Code deformation: implement a single-qubit logical H gate.
- Gauge fixing: add/remove operators into/from the stabilizer group.

- Measurement-based schemes for performing logical operations in surface code.
- Lattice surgery: implement a multi-qubit logical CNOT gate.
- Code deformation: implement a single-qubit logical H gate.
- Gauge fixing: add/remove operators into/from the stabilizer group.
- Magic state distillation: implement the non-Clifford T gate.

Lattice Surgery

- Three surface code patches to perform a lattice surgery for a fault-tolerant implementation of the logical CNOT gate.
- Control (C) and target (T) surfaces interact by merging and splitting with the intermediate surface (INT).

^eHorsman, C., Fowler, A. G., Devitt, S. & Van Meter, R. (2012). Surface code quantum computing by lattice surgery. New Journal of Physics, 14(12), 123011.

Code Deformation

- Fault-tolerant procedure for rotating a surface code by 90 degrees and reflecting it about the x axis.
- Realizing a logical H gate.

^e Bombín, H. & Martin-Delgado, M. A. (2009). Quantum measurements and gates by code deformation. Journal of Physics A: Mathematical and Theoretical, 42(9), 095302.

^fVuillot, C., Lao, L., Criger, B., Almudéver, C. G., Bertels, K. \& Terhal, B. M. (2019). Code deformation and lattice surgery are gauge fixing. New Journal of Physics, 21(3), 033028.

Code Deformation

- Fault-tolerant procedure for rotating a surface code by 90 degrees and reflecting it about the x axis.
- Realizing a logical H gate.

^e Bombín, H. & Martin-Delgado, M. A. (2009). Quantum measurements and gates by code deformation. Journal of Physics A: Mathematical and Theoretical, 42(9), 095302.

^fVuillot, C., Lao, L., Criger, B., Almudéver, C. G., Bertels, K. \& Terhal, B. M. (2019). Code deformation and lattice surgery are gauge fixing. New Journal of Physics, 21(3), 033028.

- Different gauge fixing operations result in different stabilizer groups.
- This method is used to switch between the Steane code and the quantum Reed-Muller code.

- Different gauge fixing operations result in different stabilizer groups.
- This method is used to switch between the Steane code and the quantum Reed-Muller code.

- Different gauge fixing operations result in different stabilizer groups.
- This method is used to switch between the Steane code and the quantum Reed-Muller code.

¹⁵⁻qubit Quantum Reed-Muller Code

 $\mathbb{M}\left(L_{g}^{Z}
ight)$

- Different gauge fixing operations result in different stabilizer groups.
- This method is used to switch between the Steane code and the quantum Reed-Muller code.

¹⁵⁻qubit Quantum Reed-Muller Code

- Different gauge fixing operations result in different stabilizer groups.
- This method is used to switch between the Steane code and the quantum Reed-Muller code.

15-qubit Quantum Reed-Muller Code

7-qubit Steane Code

Switch between Steane Code and Quantum Reed-Muller Codes

[4] Anderson, J. T., Duclos-Cianci, G., & Poulin, D. (2014). Fault-tolerant conversion between the steane and reedmuller quantum codes. Physical review letters. 113(8), 080501. [5] Quan, D. X., Zhu, L. L., Pei, C. X., & Sanders, B. C. (2018). Fault-tolerant conversion between adjacent Reed-Muller quantum codes based on gauge fixing. Journal

of Physics A:

115305.

Subsystem Code Gauge Fixing

[6] Paetznick, A., & Reichardt, B. W. (2013). Universal fault-tolerant quantum computation with only transversal gates and error correction. Physical review letters, 111(9), 090505

[7] Vuillot, C., Lao, L., Criger, B. Almud'ever, C. G. Bertels, K., & Terhal, B. M. (2019). Code deformation and lattice surgery are gauge fixing. New Journal of Physics, 21(3), 033028.

Magic State Distillation

- Magic state distillation implements a non-Clifford logical T gate.
- It is estimated to have a large resource overhead.

⁸O'Gorman, J., & Campbell, E. T. (2017). Quantum computation with realistic magic-state factories. Physical Review A, 95(3), 032338.

⁹Bombín, H. (2015). Gauge color codes: optimal transversal gates and gauge fixing in topological stabilizer

1. The Shor's [[9,1,3]] code corrects both the X- and Z-type errors simultaneously. Its construction can be thought of as concatenating three-qubit repetition codes.

- 1. The Shor's [[9,1,3]] code corrects both the X- and Z-type errors simultaneously. Its construction can be thought of as concatenating three-qubit repetition codes.
- 2. Stabilizer theory is a mathematical framework for studying and designing quantum error-correcting codes.

- 1. The Shor's [[9,1,3]] code corrects both the X- and Z-type errors simultaneously. Its construction can be thought of as concatenating three-qubit repetition codes.
- 2. Stabilizer theory is a mathematical framework for studying and designing quantum error-correcting codes.
- 3. Fault tolerance can be achieved by using transversal gates.

- 1. The Shor's [[9,1,3]] code corrects both the X- and Z-type errors simultaneously. Its construction can be thought of as concatenating three-qubit repetition codes.
- 2. Stabilizer theory is a mathematical framework for studying and designing quantum error-correcting codes.
- 3. Fault tolerance can be achieved by using transversal gates.
- 4. Surface codes are a family of topological stabilizer codes. Measurement-based protocols are used to realize different logical operations.

Thanks!