A Beginner's Guide to Quantum Error Correction

Sarah Meng Li

Institute for Quantum Computing, Department of Combinatorics and Optimization, University of Waterloo

QSYS 2023

Towards a Fully Operational and Scalable

Quantum Computer

The loss of quantum coherence.

- The loss of quantum coherence.
 - the loss of information from a system into the environment.

- The loss of quantum coherence.
 - the loss of information from a system into the environment.
- Present in the transmission, processing, or storage of quantum information.

Towards a Fully Operational and Scalable

Quantum Computer

Understand environmental decoherence processes and model them properly.

Towards a Fully Operational and Scalable

Quantum Computer

Understand environmental decoherence processes and model them properly.

Use error correction to protect quantum information against decoherence.

A general quantum error can be modelled by a noisy channel ϵ :

$$\epsilon:\rho\longrightarrow\sum A_k\rho A_k^{\dagger}$$

1

A general quantum error can be modelled by a noisy channel ϵ :

$$\epsilon: \rho \longrightarrow \sum A_k \rho A_k^{\dagger}$$

1

• ρ is a density matrix. It describes the quantum state of a physical system.

A general quantum error can be modelled by a noisy channel ϵ :

$$\epsilon: \rho \longrightarrow \sum A_k \rho A_k^{\dagger}$$

1

• ρ is a density matrix. It describes the quantum state of a physical system.

• A_k 's are Kraus operators: $\sum A_k^{\dagger} A_k = I$.

A general quantum error can be modelled by a noisy channel ϵ :

$$\epsilon: \rho \longrightarrow \sum A_k \rho A_k^{\dagger}$$

• ρ is a density matrix. It describes the quantum state of a physical system.

•
$$A_k$$
's are Kraus operators: $\sum A_k^{\dagger} A_k = I$.

Binary Symmetric Channel (BCS_p)

Assume $p \in [0, 1]$, the channel behaves independently for each bit that passes through it.

Examples of Single-Qubit Errors

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

$$Y = iXZ = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}.$$

$$R_ heta = egin{bmatrix} 1 & 0 \ 0 & e^{i heta} \end{bmatrix}.$$

Bit Flip
$$X : X |0\rangle = |1\rangle, X |1\rangle = |0\rangle$$

Phase Flip Z : $Z |0\rangle = |0\rangle$, $Z |1\rangle = -|1\rangle$.

 $\mbox{Complete Dephasing} \ : \ \rho \longrightarrow 1/2(\rho + Z\rho Z^{\dagger}).$

Rotation
$$R_{ heta}$$
 : $R_{ heta} \ket{0} = \ket{0}$, $R_{ heta} \ket{1} = e^{i\theta} \ket{1}$.

Examples of Single-Qubit Errors

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
, $Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

$$Y = iXZ = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

$$R_ heta = egin{bmatrix} 1 & 0 \ 0 & e^{i heta} \end{bmatrix}.$$

Bit Flip $X : X |0\rangle = |1\rangle, X |1\rangle = |0\rangle.$

Phase Flip Z : $Z |0\rangle = |0\rangle$, $Z |1\rangle = -|1\rangle$.

Complete Dephasing : $\rho \longrightarrow 1/2(\rho + Z\rho Z^{\dagger})$.

$$\text{Rotation } R_{\theta} \, : \, R_{\theta} \ket{0} = \ket{0}, R_{\theta} \ket{1} = e^{i\theta} \ket{1}.$$

Definition

A single-qubit Pauli error could be one of the following single-qubit errors:

- A bit-flip error X;
- A phase-flip error Z;
- Both a bit-flip and a phase-flip error: Y.

Suppose Alice wants to communicate to Bob, but their communication channel is noisy. How can they **reduce the noise level**?

Suppose Alice wants to communicate to Bob, but their communication channel is noisy. How can they **reduce the noise level**?

1. Get a better communication channel (BCS with a smaller p).

Suppose Alice wants to communicate to Bob, but their communication channel is noisy. How can they **reduce the noise level**?

- 1. Get a better communication channel (BCS with a smaller p).
- 2. Use quantum error correction codes.

3-Bit Repetition Code

1. Alice encodes $b \in \{0, 1\}$ as *bbb*, and sends the three bits through the channel.

```
0 \longrightarrow 000 \qquad 1 \longrightarrow 111.
```

2. Bob decodes the three bits he receives by taking the majority count. The three bits that Bob receives may not be the same.

 $000 \longrightarrow \begin{cases} 100, \text{ The 1st bit is flipped;} \\ 010, \text{ The 2nd bit is flipped;} \\ 001, \text{ The 3rd bit is flipped.} \end{cases} \qquad 111 \longrightarrow \begin{cases} 011, \text{ The 1st bit is flipped;} \\ 101, \text{ The 2nd bit is flipped;} \\ 110, \text{ The 3rd bit is flipped.} \end{cases}$

3. If no more than one bit is flipped, this method succeeds because flipping one bit does not change the majority.

Obstacles in Quantum Error Correction

- No-cloning theorem forbids the classical repetition strategy.
- Measuring qubits to identify errors would collapse superpositions.
- Need to correct bit flip and phase errors.
- Need to handle continuous rotations, decohering maps, etc.
- Need to correct errors on multiple qubits.

¹Daniel Gottesman: Quantum Error Correction and Fault Tolerance (Part 1) - CSSQI 2012.

Correct a Bit Flip Error

To correct a single bit flip error, we can encode the data as:

 $0 \longrightarrow 000, 1 \longrightarrow 111$

If there is a single bit flip error, we can correct the state by choosing the majority of the three bits.

Analysis

State that Bob receives $(\alpha |100\rangle + \beta |011\rangle) |11\rangle \qquad p(1-p)^2 \qquad 11$ $(\alpha |011\rangle + \beta |100\rangle) |11\rangle \qquad p^2(1-p) \qquad 11$

Probability

Syndrome Correction Flip the 1st qubit Flip the 2nd and 3rd gubits

Analysis

State that Bob receivesProbabili $(\alpha |100\rangle + \beta |011\rangle) |11\rangle$ $p(1-p)^2$ $(\alpha |011\rangle + \beta |100\rangle) |11\rangle$ $p^2(1-p)$

ProbabilitySyndrome $p(1-p)^2$ 11 $p^2(1-p)$ 11

e Correction Flip the 1st qubit Flip the 2nd and 3rd qubits

Suppose Bob measures 11, then he must either receives

- $\alpha |100\rangle + \beta |011\rangle$ with probability $p(1-p)^2$, or
- $\alpha |011\rangle + \beta |100\rangle$ with probability $p^2(1-p)$.

When errors are rare, one error is more likely than two errors.

Repetition Code Corrects up to One Error

		1	1 - 3p	² + 2 ₁	o ³ Suce	cess			
							$3p^2 -$	$2p^3 F$	ail
Probability	Success/Fail			\backslash					
${(1-p)^3\over 3p(1-p)^2}$	$1 - 3p^2 + 2p^3$	-0-5							
$\frac{3p^2(1-p)}{(1-p)^3}$	$3p^2 - 2p^3$								
						\backslash			
		0			0.5			1	8

Encoding: $\alpha |0\rangle + \beta |1\rangle \longrightarrow \alpha |000\rangle + \beta |111\rangle \neq (\alpha |0\rangle + \beta |1\rangle)^{\otimes 3}$

Encoding: $\alpha |0\rangle + \beta |1\rangle \longrightarrow \alpha |000\rangle + \beta |111\rangle \neq (\alpha |0\rangle + \beta |1\rangle)^{\otimes 3}$

Redundancy, not repetition.

Encoding: $\alpha |0\rangle + \beta |1\rangle \longrightarrow \alpha |000\rangle + \beta |111\rangle \neq (\alpha |0\rangle + \beta |1\rangle)^{\otimes 3}$

Redundancy, not repetition.

Suppose X_1 occurred: The encoded state becomes $\alpha |100\rangle + \beta |011\rangle$.

 $\begin{array}{ll} \mathsf{Encoding:} & \alpha \left| \mathbf{0} \right\rangle + \beta \left| \mathbf{1} \right\rangle \longrightarrow \alpha \left| \mathbf{000} \right\rangle + \beta \left| \mathbf{111} \right\rangle \neq \left(\alpha \left| \mathbf{0} \right\rangle + \beta \left| \mathbf{1} \right\rangle \right)^{\otimes \mathbf{3}} \end{array}$

Redundancy, not repetition.

Suppose X_1 occurred: The encoded state becomes $\alpha |100\rangle + \beta |011\rangle$.

Detect the error: Measure the error, not the data.

¹Cleve, R. (2021). Introduction to Quantum Information Processing. Retrieved June 6, 2023.

Correct a Phase Flip Error

Can we use the same procedure to correct a single-qubit phase flip error?

Encoding: $\alpha |0\rangle + \beta |1\rangle \longrightarrow \alpha |000\rangle + \beta |111\rangle$

Suppose Z_1 occurred: The encoded state becomes $\alpha |000\rangle - \beta |111\rangle$.

Correct a Phase Flip Error

Can we use the same procedure to correct a single-qubit phase flip error? Suppose Z_1 occurred: The encoded state becomes $\alpha |000\rangle - \beta |111\rangle$.

Correct a Phase Flip Error

Since HZH = X, we can reduce the problem of the phase flip error correction to an instance of the bit flip error correction.

Correct a Single-Qubit Pauli Error

Shor's Nine-Qubit Code

Welcome to the error correction zoo

Jump to > Linear binary, Additive qary, RS, RM, LDPC, Polar, Rank-metric, STC, Stabilizer, CSS, Good QLDPC, Kitaev surface, Color, Topological, Holographic, EAQECC, GKP, Cat

Classical Domain ► Binary Kingdom, Galois-field Kingdom, Matrix Kingdom, Lattice Kingdom, Spherical Kingdom, Ring Kingdom, Group Kingdom Quantum Domain ► Qubit Kingdom, Modular-qudit Kingdom, Galois-qudit Kingdom, Bosonic Kingdom, Fermionic Kingdom, Spin Kingdom, Group Kingdom, Category Kingdom Code lists ► Approximate quantum codes, Binary linear codes, Quantum CSS codes, Codes with notable decoders, Dynamically generated quantum codes, Asymptotically good QLDPC codes, Hamiltonian-based codes, Holographic codes, Quantum codes based on homological products, LDPC codes, MDS codes, Perfect codes, *q*-ary linear codes, Quantum LDPC codes, Quantum codes with code capacity thresholds, Quantum codes with fault-tolerant gadgets ... (see all)

Your Random Code Pick: Tanner code

Binary linear code defined on edges on a regular graph G such that each subsequence of bits corresponding to edges in the neighborhood any vertex belong to some \textit{short} binary linear code C_0 . Expansion properties of the underlying graph can yield efficient decoding algorithms. More ...

Home Page

Code graph Code lists All codes Glossary of concepts

css

More

Add new code Additional resources Team About

Stats at a glance: 275 code entries, 15 kingdoms, 2 domains, 72 classical codes, 124 quantum codes, 79 abstract property codes, 27 topological codes, 33 CSS codes, 44 quantum LDPC codes, and 26 bosonic codes.

go → refresh

Thanks!