

Improved Synthesis of Restricted Clifford+T Circuits

Sarah Meng Li¹ · Neil J. Ross²

¹Institute for Quantum Computing, University of Waterloo, Canada ²Department of Mathematics and Statistics, Dalhousie University, Canada

1. Background

Algorithm: Carrying out a well-defined task.

Compilation: Translating a program to a sequence of elementary quantum gates. Implementation: Mapping unitary operations to physical architectures.

Restricted Clifford+T Circuits

Quantum circuits over the gate set $\{X, CX, CCX, K\}$.

The Circuit-Matrix Correspondence

- A family of quantum circuits corresponds to a group of matrices.
- Studying matrix groups is a way to study quantum circuits.

2. Preliminaries

The ring of dyadic fractions: $\mathbb{Z}\left[\frac{1}{2}\right] = \left\{\frac{u}{2q} | u \in \mathbb{Z}, q \in \mathbb{N}\right\}.$ The group of orthogonal dyadic matrices: $\mathbf{O}_n(\mathbb{Z}\begin{bmatrix}\frac{1}{2}\\ \end{bmatrix})$, or \mathcal{O}_n . Denominator exponent k: $t = \frac{a}{2^k} \in \mathbb{Z}[\frac{1}{2}]$, $a \in \mathbb{Z}$, $k \in \mathbb{N}$. The least denominator exponent lde: The minimal k of t is lde(t).

Example: $U \in \mathcal{O}_5$, $\operatorname{Ide}(U) = 2$.

	万 3/4	1/4	-1/4	1/4	1/ <mark>2</mark>]		∫ 3	1	-1	1	2]	
	1/4	3/4	1/4	-1/4	-1/2		1	3	1	-1	-2	
U =	-1/4	1/4	3/4	1/4	1/2	$=\frac{1}{2^{2}}$	-1	1	3	1	2	

- The algorithm proceeds one column at a time, reducing each column to a corresponding basis vector.
- While outputting a word $\overrightarrow{G_{\ell}}$ after each iteration, the algorithm recursively acts on the input matrix until it is reduced to the identity matrix I.

$$\begin{bmatrix} 1/4 & -1/4 & 1/4 & 3/4 & -1/2 \\ -1/2 & 1/2 & -1/2 & 1/2 & 0 \end{bmatrix} \begin{bmatrix} 2^2 \\ 1 & -1 & 1 & 3 & -2 \\ -2 & 2 & -2 & 2 & 0 \end{bmatrix}$$

3. Basic Gates

Two-level Operators:
$$U_{[\alpha,\beta]}$$

Let $U = \begin{bmatrix} x_{1,1} & x_{1,2} \\ x_{2,1} & x_{2,2} \end{bmatrix}$. The action of $U_{[\alpha,\beta]}$, $1 \le \alpha < \beta \le n$, is defined as
 $U_{[\alpha,\beta]}v = w$, where $\begin{cases} \begin{bmatrix} w_{\alpha} \\ w_{\beta} \end{bmatrix} = U \begin{bmatrix} v_{\alpha} \\ v_{\beta} \end{bmatrix}, \\ w_{i} = v_{i}, i \notin \{\alpha,\beta\}. \end{cases}$

Example: Construct $X_{[2,3]}$ by embedding X into a 4×4 identity matrix.

	[1	0	0	0		$\left\lceil v_1 \right\rceil$		$\left\lceil v_{1} \right\rceil$	
V _	0	0	1	0		<i>v</i> ₂		<i>V</i> 3	
$\lambda_{[2,3]} =$	0	1	0	0	such that \wedge [2,3]	V3	=	<i>v</i> ₂	
	0	0	0	1		<i>v</i> ₄		V4	

4. Constructive Membership Problem (CMP)

Let \mathcal{G} be a group of matrices with entries over some ring, $S = \{a_1, \ldots, a_k\}$ be a set of generators for \mathcal{G} .

 $\forall U \in \mathcal{G}$, find a sequence of generators a_1, \ldots, a_ℓ such that $a_1 \cdot \ldots \cdot a_\ell = U$. • The smaller the ℓ , the better the solution.

$$\overrightarrow{G_{\ell}} \cdots \overrightarrow{G_{1}}M = \mathbb{I} \Longrightarrow M = \overrightarrow{G_{1}}^{-1} \cdots \overrightarrow{G_{\ell}}^{-1}$$

6. The Global Synthesis Algorithm for \mathcal{L}_8 : O(k)

Define a global synthesis for \mathcal{L}_8 . Then, leverage this to find a global synthesis for \mathcal{O}_8 .

Orthogonal Scaled Dyadic Matrices

 \mathcal{L}_8 is the group of $\mathbf{8} \times \mathbf{8}$ orthogonal matrices of the form $M/\sqrt{2}^k$, where M is an integer matrix and k is a nonnegative integer.

 $\cdot \mathcal{O}_8 \subset \mathcal{L}_{8}$. $\cdot \mathcal{F} = \{(-1)_{[\alpha]}, X_{[\alpha,\beta]}, I_4 \otimes H : 1 \leq \alpha < \beta \leq 8\} \text{ generates } \mathcal{L}_8.$ · Let $U \in \mathcal{L}_n$. Write $U = \frac{1}{\sqrt{2^k}}M$ with k minimal. The residue mod 2 of M is called the **binary pattern** of U, denoted as \overline{U} .

Example: $U, V \in \mathcal{L}_8$, $U \in \mathcal{O}_8$, but $V \notin \mathcal{O}_8$

- Weight Lemma: Let $U \in \mathcal{L}_n$ and $\operatorname{Ide}_{\sqrt{2}}(U) = k \ge 2$. Let u be an arbitrary column vector in \overline{U} . Then $|\{u_i; u_i = 1, 1 \le i \le n\}| \equiv 0(4)$. In other words, in each column of \overline{U} , the **1**'s occur in quadruples.
- Collision Lemma: Let $U \in \mathcal{L}_n$ and $\operatorname{Ide}_{\sqrt{2}}(U) = k > 0$. Any two distinct columns in \overline{U} must have evenly many **1**'s in common.
- Pattern Theorem: There exists a set \mathcal{P} of 14 binary patterns such that if $U \in \mathcal{L}_8$ and $\operatorname{Ide}(U) \geq 2, \overline{U} \in \mathcal{P}.$

Up to row and column permutations, as well as taking transpose.

• Patterns $A \sim K$ are either row-paired or column-paired. $\exists P \in S_8$ such that $\operatorname{Ide}_{\sqrt{2}}(U(P(I \otimes H))) < \operatorname{Ide}_{\sqrt{2}}(U)$.

- A solution is optimal if the sequence is a shortest possible sequence.
- The algorithm to solve CMP is called the **exact synthesis algorithm**.

The Circuit-Matrix Correspondence (Amy et al., 2020)

Let $\mathcal{T} = \{(-1)_{[\alpha]}, X_{[\alpha,\beta]}, K_{[\alpha,\beta,\gamma,\delta]} : 1 \le \alpha < \beta < \gamma < \delta \le n\}.$ • U can be exactly represented by a circuit over $\{X, CX, CCX, K\}$ iff $U \in \mathcal{O}_n$. • U can be exactly represented by a circuit over \mathcal{T} iff $U \in \mathcal{O}_n$.

5. The Local Synthesis Algorithm: $O(2^nk)$

• Patterns $L \sim N$ are neither row-paired nor column-paired.																										
	Le	et L	<i>I</i> ′ =	= (/	\otimes	H)	U ((Ⅰ⊗	H).	<u>U'</u>	is r	OW-	pair	ed v	with	lde	$e_{\sqrt{2}}$	$\overline{2}(U') \leq$	<u> </u>	$de_{\sqrt{2}}$	ر 2(ل	J).				
	1	1	1	1	1	1	1	1]	, <i>M</i> =	1	1	1	1	0	0	0	0		1	1	1	1	0	0	0	0]
	1	1	1	1	0	0	0	0		1	1	0	0	1	1	0	0		1 1 0 0	0	1	1	0	0		
	1	1	0	0	1	1	0	0		1	0	1	0	1	0	1	0		1	0	1	0	1	0	1	0
I -	1	1	0	0	0	0	1	1		1	0	0	1	0	1	1	0	N -	_ 1 0	0	0	1	0	1	1	0
L -	1	0	1	0	1	0	1	0,		0	1	1	0	1	0	0	1	, 14 –	0	1	1	0	0	1	1	0
	1	0	1	0	0	1	0	1		0	1	0	1	0	1	0	1		0	1	0	1	1	0	1	0
	1	0	0	1	1	0	0	1		0	0	1	1	0	0	1	1		0	0	1	1	1	1	0	0
	1	0	0	1	0	1	1	0		0	0	0	0	1	1	1	1		0	0	0	0	0	0	0	0

7. The Global Synthesis Algorithm for \mathcal{O}_8 : O(k)

Intuition: Commuting $I \otimes H$ with an element in \mathcal{T} adds O(1) gates.

 $(I \otimes H)(I \otimes H) = \epsilon$ $(I \otimes H)(-1)_{[1]} = (-1)_{[1]}X_{[1,2]}(-1)_{[1]}(I \otimes H)$ $(I \otimes H)X_{[a,a+1]} = (-1)^{a+1}_{[a+1]}X^a_{[a,a+1]}K^a_{[a-1,a,a+1,a+2]}(I \otimes H)$ $(I \otimes H)K_{[1,2,3,4]} = K_{[1,2,3,4]}(I \otimes H)$