

# Improved Synthesis of Restricted Clifford+T Circuits 

Sarah Meng Li ${ }^{1}$ • Neil J. Ross ${ }^{2}$

${ }^{1}$ Institute for Quantum Computing, University of Waterloo, Canada ${ }^{2}$ Department of Mathematics and Statistics, Dalhousie University, Canada

## 1. Background

Algorithm: Carrying out a well-defined task.
Compilation: Translating a program to a sequence of elementary quantum gates. Implementation: Mapping unitary operations to physical architectures.

## Restricted Clifford+T Circuits

Quantum circuits over the gate set $\{X, C X, C C X, K\}$

## The Circuit-Matrix Correspondence

- A family of quantum circuits corresponds to a group of matrices.

Studying matrix groups is a way to study quantum circuits.

## 2. Preliminaries

The ring of dyadic fractions: $\mathbb{Z}\left[\frac{1}{2}\right]=\left\{\left.\frac{u}{2^{q}} \right\rvert\, \boldsymbol{u} \in \mathbb{Z}, \boldsymbol{q} \in \mathbb{N}\right\}$.
The group of orthogonal dyadic matrices: $\mathbf{O}_{n}\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)$, or $\mathcal{O}_{n}$.
Denominator exponent $k: t=\frac{a}{2^{k}} \in \mathbb{Z}\left[\frac{1}{2}\right], a \in \mathbb{Z}, k \in \mathbb{N}$.
The least denominator exponent Ide: The minimal $k$ of $t$ is $\operatorname{Ide}(t)$

## Example: $U \in \mathcal{O}_{5}, \operatorname{Ide}(U)=2$.

$U=\left[\begin{array}{rrrrr}3 / 4 & 1 / 4 & -1 / 4 & 1 / 4 & 1 / 2 \\ 1 / 4 & 3 / 4 & 1 / 4 & -1 / 4 & -1 / 2 \\ -1 / 4 & 1 / 4 & 3 / 4 & 1 / 4 & 1 / 2 \\ 1 / 4 & -1 / 4 & 1 / 4 & 3 / 4 & -1 / 2 \\ -1 / 2 & 1 / 2 & -1 / 2 & 1 / 2 & 0\end{array}\right]=\frac{1}{2^{2}}\left[\begin{array}{rrrrr}3 & 1 & -1 & 1 & 2 \\ 1 & 3 & 1 & -1 & -2 \\ -1 & 1 & 3 & 1 & 2 \\ 1 & -1 & 1 & 3 & -2 \\ -2 & 2 & -2 & 2 & 0\end{array}\right]$

## 3. Basic Gates

Basic Gates
$(-1)=[-1], \quad H=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right], \quad K=H \otimes H=\frac{1}{2}\left[\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right]$

$$
X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad C X=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]=\left[\begin{array}{l|l}
I_{2} & 0 \\
\hline \mathbf{0} & X
\end{array}\right], \quad C C X=\left[\begin{array}{l|l}
I_{6} & 0 \\
\hline \mathbf{0} & X
\end{array}\right]
$$

## Two-level Operators: $U_{[\alpha, \beta]}$

Let $U=\left[\begin{array}{ll}x_{1,1} & x_{1,2} \\ x_{2,1} & x_{2,2}\end{array}\right]$. The action of $U_{[\alpha, \beta]}, 1 \leq \alpha<\beta \leq n$, is defined as

$$
U_{[\alpha, \beta]} v=w, \text { where }\left\{\begin{array}{l}
{\left[\begin{array}{l}
w_{\alpha} \\
w_{\beta}
\end{array}\right]=U\left[\begin{array}{l}
v_{\alpha} \\
v_{\beta}
\end{array}\right]} \\
w_{i}=v_{i}, i \notin\{\alpha, \beta\} .
\end{array}\right.
$$

Example: Construct $X_{[2,3]}$ by embedding $X$ into a $4 \times 4$ identity matrix.

$$
X_{[2,3]}=\left[\begin{array}{llll}
1 & \mathbf{0} & \mathbf{0} & 0 \\
\mathbf{0} & 0 & 1 & 0 \\
\mathbf{0} & 1 & 0 & 0 \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & 1
\end{array}\right] \text { such that } X_{[2,3]}\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
v_{1} \\
v_{3} \\
v_{2} \\
v_{4}
\end{array}\right] .
$$

## 4. Constructive Membership Problem (CMP)

Let $\mathcal{G}$ be a group of matrices with entries over some ring, $S=\left\{a_{1}, \ldots, a_{k}\right\}$ be a set of generators for $\mathcal{G}$

```
\(\forall U \in \mathcal{G}\), find a sequence of generators \(a_{1}, \ldots, a_{\ell}\) such that \(a_{1} \cdot \ldots \cdot a_{\ell}=U\).
    The smaller the \(\ell\), the better the solution.
    - A solution is optimal if the sequence is a shortest possible sequence
    . The algorithm to solve CMP is called the exact synthesis algorithm.
```


## The Circuit-Matrix Correspondence (Amy et al., 2020)

Let $\mathcal{T}=\left\{(-1)_{[\alpha]}, X_{[\alpha, \beta]}, K_{[\alpha, \beta, \gamma, \delta]}: \mathbf{1} \leq \alpha<\beta<\gamma<\delta \leq \boldsymbol{n}\right\}$

- $U$ can be exactly represented by a circuit over $\{X, C X, C C X, K\}$ iff $U \in \mathcal{O}_{n}$.
. $U$ can be exactly represented by a circuit over $\mathcal{T}$ iff $U \in \mathcal{O}_{n}$.


## 5. The Local Synthesis Algorithm: $O\left(2^{n} k\right)$

Input: $v \in \mathbb{Z}\left[\frac{1}{2}\right]^{8} \quad$ Output: $G_{1}, G_{2}, G_{3} \quad$ Result: $G_{3} \cdot G_{2} \cdot G_{1} \cdot v=e_{1}$

$\mathrm{G}_{2}=K_{[5,6,7,8]}{ }^{(-1)}{ }^{[5]}$

