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Quantum Algorithm: Carrying out a well-defined task.

Quantum Compilation: Program ⇒ Sequence of elementary quantum gates.

Implementation: Mapping unitary operations to physical architectures.
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Toffoli-Hadamard circuits are quantum circuits over the gate set

{𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐻}.

• • 𝐻

𝑋 • 𝑋 𝑋 • 𝑋

𝐻 • 𝑋 • 𝐻 • 𝑋 •
𝐻 𝑋 𝐻

1Amy, M., Glaudell, A. N., & Ross, N. J. (2020). Number-theoretic characterizations of some
restricted Clifford+T circuits. Quantum, 4, 252.
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• 𝐻 •
𝑋 • 𝑋 𝐻 𝑋 • 𝑋

𝐻 • 𝑋 • • 𝑋 •
𝐻 𝑋

A Toffoli-Hadamard Circuit

•
𝐾

•
𝑋 • 𝑋 𝑋 • 𝑋

𝐾
• 𝑋 • • 𝑋 •
𝑋

A Toffoli-K Circuit
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Restricted Clifford+T Circuits



(−1) = [−1]

𝐻 =
1
√
2

[
1 1
1 −1

]
, 𝐾 = 𝐻 ⊗ 𝐻 =

1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


𝑋 =

[
0 1

1 0

]
, 𝐶𝑋 =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


=

[
𝐼2 0

0 𝑋

]
, 𝐶𝐶𝑋 =

[
𝐼6 0

0 𝑋

]
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Basic Gates



• A family of quantum circuits corresponds to a group of matrices.

• Studying matrix groups is a way to study quantum circuits.
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The Circuit-Matrix Correspondence



• L𝑛 is the group of orthogonal scaled dyadic matrices , which consists of
𝑛 × 𝑛 orthogonal matrices of the form 𝑀/

√
2𝑘 , where 𝑀 is an integer matrix

and 𝑘 is a nonnegative integer.

• Example: 𝑉 ∈ L4

𝑉 =
1
√
2


1 0 −1 0
0 −1 0 −1
1 0 1 0
0 1 0 −1


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Orthogonal Scaled Dyadic Matrices



• Z
[
1
2

]
=
{
𝑢
2𝑞 |𝑢 ∈ Z, 𝑞 ∈ N

}
is the ring of dyadic fractions.

• O𝑛
(
Z
[
1
2

] )
is the group of orthogonal dyadic matrices, which consists of

𝑛 × 𝑛 orthogonal matrices of the form 𝑀/2𝑘 , where 𝑀 is an integer matrix
and 𝑘 is a nonnegative integer. For short, we denote it as O𝑛.

• Example: 𝑈 ∈ O5

𝑈 =


3/4 1/4 −1/4 1/4 1/2
1/4 3/4 1/4 −1/4 −1/2

−1/4 1/4 3/4 1/4 1/2
1/4 −1/4 1/4 3/4 −1/2

−1/2 1/2 −1/2 1/2 0


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22


3 1 −1 1 2
1 3 1 −1 −2

−1 1 3 1 2
1 −1 1 3 −2

−2 2 −2 2 0


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Example: 𝑈 ∈ O4

𝑈 =
1

√
2
2
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1 −1 −1 −1
1 1 −1 1
1 1 1 −1
1 −1 1 1
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Orthogonal (Scaled) Dyadic Matrices



Let G be a group and let S be a set of generators for G. The constructive
membership problem for G and S, denoted P(G,S), is the following:

Given 𝑔 ∈ G, find a sequence of generators 𝑠1, . . . , 𝑠ℓ ∈ S such that

𝑠1 · . . . · 𝑠ℓ = 𝑔,

where · is the group operation.

• The smaller the ℓ, the better the solution.

• A solution is optimal if the sequence is a shortest possible sequence.

• An algorithm to solve the CMP is called an exact synthesis algorithm.
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Theorem (Solutions to CMP: The AGR Algorithm1)

For an n-dimensional orthogonal matrix 𝑈,

− it can be exactly represented by a circuit over {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐻} iff 𝑈 ∈ L𝑛.

− it can be exactly represented by a circuit over {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐾} iff 𝑈 ∈ O𝑛.

The gate complexity of the AGR algorithm in both cases is 𝑂 (2𝑛 log(𝑛)𝑘).

• A good solution to CMP yields shorter quantum circuits.

• Can we find a good solution to the CMP for O𝑛 and L𝑛?

1Amy, M., Glaudell, A. N., & Ross, N. J. (2020). Number-theoretic characterizations of some
restricted Clifford+T circuits. Quantum, 4, 252.
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The Circuit-Matrix Correspondence I



Definition

Let 𝑈 =

[
𝑥1,1 𝑥1,2
𝑥2,1 𝑥2,2

]
. The action of 𝑈[𝛼,𝛽 ] , 1 ≤ 𝛼 < 𝛽 ≤ 𝑛, is defined as

𝑈[𝛼,𝛽 ]𝑣 = 𝑤, where

[
𝑤𝛼
𝑤𝛽

]
= 𝑈

[
𝑣𝛼
𝑣𝛽

]
,

𝑤𝑖 = 𝑣𝑖 , 𝑖 ∉ {𝛼, 𝛽}.

Example:

Let 𝑋 =

[
0 1
1 0

]
. Then 𝑋[2,3] =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 and 𝑋[2,3]


𝑣1
𝑣2
𝑣3
𝑣4

 =

𝑣1
𝑣3
𝑣2
𝑣4

 .
11

Two-level Operator: 𝑈[𝛼,𝛽]



Similarly, we can create a four-level operator by embedding a 4 × 4 matrix U
into an 𝑛 × 𝑛 identity matrix.

Let 𝐾 =
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 . Then 𝐾[1,2,4,6] =



1/2 1/2 0 1/2 0 1/2
1/2 −1/2 0 1/2 0 −1/2
0 0 1 0 0 0
1/2 1/2 0 −1/2 0 −1/2
0 0 0 0 1 0
1/2 −1/2 0 −1/2 0 1/2


.

𝐾[1,2,4,6]



𝑣1
𝑣2
𝑣3
𝑣4
𝑣5
𝑣6


=



(𝑣1 + 𝑣2 + 𝑣4 + 𝑣6)/2
(𝑣1 − 𝑣2 + 𝑣4 − 𝑣6)/2

𝑣3
(𝑣1 + 𝑣2 − 𝑣4 − 𝑣6)/2

𝑣5
(𝑣1 − 𝑣2 − 𝑣4 + 𝑣6)/2


.
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Four-level Operator: 𝑈[𝛼,𝛽,𝛾,𝛿]



F𝑛 =
{
(−1)[𝛼] , 𝑋[𝛼,𝛽 ] , 𝐾[𝛼,𝛽,𝛾, 𝛿 ] , 𝐼𝑛/2 ⊗ 𝐻 : 1 ≤ 𝛼 < 𝛽 < 𝛾 < 𝛿 ≤ 𝑛

}
.

G𝑛 =
{
(−1)[𝛼] , 𝑋[𝛼,𝛽 ] , 𝐾[𝛼,𝛽,𝛾, 𝛿 ] : 1 ≤ 𝛼 < 𝛽 < 𝛾 < 𝛿 ≤ 𝑛

}
.

Theorem (Solutions to CMP: The AGR Algorithm1)

Let 𝑈 be an 𝑛 × 𝑛matrix.
− 𝑈 ∈ L𝑛 iff 𝑈 can be written as a product of elements of F𝑛.

− 𝑈 ∈ O𝑛 iff 𝑈 can be written as a product of elements of G𝑛.

• When 𝑛 = 2𝑚, every operator in G𝑛 and F𝑛 can be exactly represented by
𝑂 (log(𝑛)) operators in {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐾} and {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐻}, respectively.

1Amy, M., Glaudell, A. N., & Ross, N. J. (2020). Number-theoretic characterizations of some
restricted Clifford+T circuits. Quantum, 4, 252.
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Let 𝑡 ∈ Z
[
1
2

]
. 𝑡 = 𝑎

2𝑘
, where 𝑎 ∈ Z and 𝑘 ∈ N. 𝑘 is a denominator exponent for 𝑡. The

minimal such 𝑘 is called the least denominator exponent of 𝑡, written lde(𝑡).

Example: LDE of a column vector

𝑣 =
1

27



54
62
98
2
2
2
2
2


=

2

27



27
31
49
1
1
1
1
1


=

1

26



27
31
49
1
1
1
1
1


lde(𝑣) = 6

Example: LDE of a matrix

𝑈 =
1

2



−1 1 1 0 1 0 0 0
−1 −1 0 1 0 1 0 0
−1 1 −1 0 −1 0 0 0
−1 −1 0 −1 0 −1 0 0
0 0 1 1 −1 −1 0 0
0 0 1 −1 −1 1 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2


lde(𝑈) = 1
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The Least Denominator Exponent (LDE)
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lde(𝑈) = 1
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Let 𝑡 ∈ Z
[
1
2

]
. 𝑡 = 𝑎

2𝑘
, where 𝑎 ∈ Z and 𝑘 ∈ N. 𝑘 is a denominator exponent for 𝑡. The
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2
2
2
2
2


=

2

27
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31
49
1
1
1
1
1
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1
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1
1
1
1
1
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Lemma (Base Case)

Let 𝑣 ∈ Z
[
1
2

]𝑛 be a unit vector. Let 𝑘 = lde(𝑣). If 𝑘 = 0, then 𝑣 = ±𝑒 𝑗 for some
𝑗 ∈ {1, . . . , 𝑛}.

Lemma (Count)

Let 𝑣 ∈ Z
[
1
2

]𝑛 be a unit vector, and lde(𝑣) = 𝑘 > 0. Let 𝑤 = 2𝑘𝑣. Then the number of
odd entries in 𝑤 is a multiple of 4.

Lemma (Parity Reduction)

Let 𝑢1, 𝑢2, 𝑢3, 𝑢4 be odd integers. Then there exist 𝜏1, 𝜏2, 𝜏3, 𝜏4 ∈ Z2 such that

𝐾[1,2,3,4] (−1)𝜏1[1] (−1)
𝜏2
[2] (−1)

𝜏3
[3] (−1)

𝜏4
[4]


𝑢1
𝑢2
𝑢3
𝑢4

 =

𝑢′1
𝑢′2
𝑢′3
𝑢′4

 , 𝑢
′
1, 𝑢

′
2, 𝑢

′
3, 𝑢

′
4 are even integers.

15



Example: Input: 𝑣 ∈ Z
[
1
2

]8 Output: 𝐺1, 𝐺2, 𝐺3 Result: 𝐺3 · 𝐺2 · 𝐺1 · 𝑣 = 𝑒1

𝑣 :
1

4

©­­­­­­­­­­­­­«

−1
1

−1
−1
3

1

1

1

ª®®®®®®®®®®®®®¬
lde(𝑣) = 2

𝐺1=𝐾[1,2,3,4] (−1) [4] (−1) [3] (−1) [1]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝑣′ :

1

4

©­­­­­­­­­­­­­«

2

0

0

0

3

1

1

1

ª®®®®®®®®®®®®®¬
lde(𝑣′ ) = 2

𝐺2=𝐾[5,6,7,8] (−1) [5]
−−−−−−−−−−−−−−−−−→

𝑣′′ :
1

4

©­­­­­­­­­­­­­«

2

0

0

0

0

−2
−2
−2

ª®®®®®®®®®®®®®¬
=

1

2

©­­­­­­­­­­­­­«

1

0

0

0

0

−1
−1
−1

ª®®®®®®®®®®®®®¬
lde(𝑣′′ ) = 1

𝐺3=𝐾[1,6,7,8] (−1) [8] (−1) [7] (−1) [6]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝑣′′′ :

1

2

©­­­­­­­­­­­­­«

2

0

0

0

0

0

0

0

ª®®®®®®®®®®®®®¬
=

©­­­­­­­­­­­­­«

1

0

0

0

0

0

0

0

ª®®®®®®®®®®®®®¬
= 𝑒1

lde(𝑣′′′ ) = 0

.

16
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• The algorithm proceeds one column at a time, reducing each column to a
corresponding basis vector.

• While outputting a word
−→
𝐺ℓ after each iteration, the algorithm recursively

acts on the input matrix until it is reduced to the identity matrix I.

𝑀

−→
𝐺1−−→

©­­­­«
0

𝑀 ′ ...

0
0 · · · 0 1

ª®®®®¬
−→
𝐺2−−→

©­­­­­­«

0 0

𝑀 ′′ ...
...

0 0
0 · · · 0 1 0
0 · · · 0 0 1

ª®®®®®®¬
−→
𝐺3−−→ · · ·

−→
𝐺ℓ−−→ I

−→
𝐺ℓ · · · · ·

−→
𝐺1𝑀 = I⇒ 𝑀 =

−→
𝐺1

−1 · · · · · −→𝐺ℓ−1

17
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Lemma
Let u ∈ Z

[
1
2

]𝑛 with lde(u) = 𝑘 . The number of generators in G𝑛 to reduce u to e 𝑗 is
𝑂 (𝑛𝑘).

Theorem
Let 𝑈 ∈ O𝑛 with lde(𝑈) = 𝑘 . 𝑈 can be exactly represented by 𝑂 (2𝑛𝑘) generators
over G𝑛.

Proof. Let 𝑓u𝑖 be the cost of reducing u𝑖 to e𝑖 .
• Each row operation may increase the lde of any column in U by 1.
• During reduction, the lde of any other column may increase up to 2𝑘 .

𝑓u1 = 𝑂 (𝑛𝑘) , 𝑓u2 = 𝑂 ((𝑛 − 1)2𝑘) , 𝑓u3 = 𝑂
(
(𝑛 − 2)22𝑘

)
, . . . , 𝑓u𝑛 = 𝑂

(
2𝑛−1𝑘

)
.

𝑆𝑛 =

𝑛∑︁
𝑖=1

𝑓u𝑖 =

𝑛∑︁
𝑖=1

(𝑛 − 𝑖 + 1)2𝑖−1𝑘 = 𝑂 (2𝑛𝑘).

□ 18

Gate Complexity of the AGR Algorithm



With ancillary qubits, the gate complexity of the exact synthesis for L𝑛 over F𝑛
is reduced from 𝑂 (2𝑛𝑘) to 𝑂 (𝑛2𝑘) .

Definition
For an 𝑛-dimensional unit vector |𝜓⟩, the reflection operator around |𝜓⟩ is

𝑅 |𝜓⟩ = 𝐼 − 2 |𝜓⟩ ⟨𝜓 | .

Proposition: Gate Complexity of the Reflection Operator

Let |𝜓⟩ = v/
√
2
𝑘

be an 𝑛-dimensional unit vector with lde√2 ( |𝜓⟩) = 𝑘 , v is an integer
vector. The reflection operator 𝑅 |𝜓⟩ can be exactly represented by 𝑂 (𝑛𝑘)
generators over F𝑛.

2Vadym Kliuchnikov (2013). “Synthesis of unitaries with Clifford+ T circuits”. In: arXiv preprint
arXiv:1306.3200.
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Let 𝑈 ∈ L𝑛. Then 𝑈 can be simulated using the unitary

𝑈′ = |+⟩ ⟨−| ⊗ 𝑈 + |−⟩ ⟨+| ⊗ 𝑈†.

Moreover, 𝑈′ ∈ L2𝑛 and 𝑈′ can be factored as a product 𝑈′ =
∏𝑛
𝑗=1 𝑅 |𝜔−

𝑗
⟩ of

reflection operators around vectors

|𝜔−
𝑗 ⟩ =

(
|−⟩ | 𝑗⟩ − |+⟩ |u 𝑗⟩

)
√
2

,

u 𝑗 is the 𝑗-th column vector in 𝑈 and | 𝑗⟩ is the 𝑗-th computational basis vector.

𝑈′|−⟩ |+⟩

𝑈
...|𝜓⟩ ... 𝑈 |𝜓⟩

• 𝐼 =
∑𝑛
𝑗=1

(
|𝜔+
𝑗
⟩ ⟨𝜔+

𝑗
| + |𝜔−

𝑗
⟩ ⟨𝜔−

𝑗
|
)

The completeness relation.

• 𝑈′ =
∑𝑛
𝑗=1

(
|𝜔+
𝑗
⟩ ⟨𝜔+

𝑗
| − |𝜔−

𝑗
⟩ ⟨𝜔−

𝑗
|
)

The spectral theorem.

𝐼 −𝑈′ = 2
𝑛∑︁
𝑗=1

|𝜔−
𝑗 ⟩ ⟨𝜔−

𝑗 | ⇒ 𝑈′ = 𝐼 − 2
𝑛∑︁
𝑗=1

|𝜔−
𝑗 ⟩ ⟨𝜔−

𝑗 | =
𝑛∏
𝑗=1

𝑅 |𝜔−
𝑗
⟩ .

20
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Theorem
Let 𝑈 ∈ L𝑛 with lde√2 (𝑈) = 𝑘 . Then 𝑈 can be represented by 𝑂 (𝑛2𝑘) generators
over F𝑛 using the Householder algorithm.

Proof. We showed that 𝑈 can be simulated by 𝑈′ where

𝑈′ = |+⟩ ⟨−| ⊗ 𝑈 + |−⟩ ⟨+| ⊗ 𝑈† =
𝑛∏
𝑗=1

𝑅 |𝜔−
𝑗
⟩ .

Moreover, each 𝑅 |𝜔−
𝑗
⟩ can be exactly represented by 𝑂 (𝑛𝑘) generators from F𝑛.

Therefore, to represent 𝑈, we need 𝑛 · 𝑂 (𝑛𝑘) = 𝑂 (𝑛2𝑘) generators over F𝑛. □
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• The AGR algorithm carries out matrix factorization locally - it synthesizes
one column at a time.

• When 𝑛 is fixed, both AGR and householder algorithms have the same
worst-case gate complexity – linear in 𝑘 .

• Next, we will take a global view of each matrix. This results in a smaller
gate count in practice.

𝑂 (𝑛2𝑘) =⇒ 𝑂 (𝑘)

• Define a global synthesis method for 𝑈 ∈ L8, then leverage this to find a
global synthesis method for 𝑈′ ∈ O8.
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𝑈 ∈ L8. Write 𝑈 = 1√
2
𝑘𝑀 with 𝑘 minimal. There exists

−→
𝐺1, . . . ,

−→
𝐺𝑘 over F , such that

1
√
2
𝑘
𝑀

−→
𝐺1−−→ 1

√
2
𝑘−1𝑀

′
−→
𝐺2−−→ 1

√
2
𝑘−2𝑀

′′
−→
𝐺3−−→ · · ·

−→
𝐺𝑘−−→ I.

Therefore, −→
𝐺𝑘 · · · · ·

−→
𝐺1𝑈 = I =⇒ 𝑈 =

−→
𝐺1

−1 · · · · · −→𝐺𝑘−1.
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Binary Pattern

Let 𝑈 ∈ L𝑛. Write 𝑈 = 1√
2
𝑘𝑀 with 𝑘 minimal. The residue mod 2 of 𝑀 is called the

binary pattern of 𝑈, denoted as 𝑈.

Example: 𝑈 ∈ L5

𝑈 =
1

√
2
4


3 1 −1 1 2
1 3 1 −1 −2
−1 1 3 1 2
1 −1 1 3 −2
−2 2 −2 2 0


→ 𝑈 =


1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
0 0 0 0 0


24
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Weight Lemma

Let 𝑈 ∈ L𝑛 and lde√2 (𝑈) = 𝑘 ≥ 2. Let u be an arbitrary column vector in 𝑈. Then

|{𝑢𝑖; 𝑢𝑖 = 1, 1 ≤ 𝑖 ≤ 𝑛}| ≡ 0(4).

In other words, in each column of 𝑈, the 1’s occur in quadruples.

Proof. Let v be a column vector in 𝑈 and v = 1√
2
𝑘w, where w ∈ Z𝑛. Since ⟨v, v⟩ = 1,

⟨w,w⟩ = 2𝑘 and thus
∑
𝑤2
𝑖
= 2𝑘 . When 𝑘 ≥ 2,

∑
𝑤2
𝑖
≡ 0(4). Note that

𝑤2
𝑖 ≡ 1(4) ⇐⇒ 𝑤𝑖 ≡ 1(2), 𝑤2

𝑖 ≡ 0(4) ⇐⇒ 𝑤𝑖 ≡ 0(2).

Hence the number of odd entries in w is a multiple of 4. □
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Intuition: The 1’s in any two distinct columns of 𝑈 collide evenly many times.

Collision Lemma
Let 𝑈 ∈ L𝑛 and lde√2 (𝑈) = 𝑘 > 0. Any two distinct columns in 𝑈 must have evenly
many 1’s in common.

Example: Evenly many collisions

𝑢1 =



1
1
1
1
0
0


, 𝑢2 =



0
0
1
1
1
1



Example: Oddly many collisions

𝑢3 =



1
1
1
1
0
0


, 𝑢4 =



1
1
1
0
1
0


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, 𝑢4 =



1
1
1
0
1
0


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Theorem
There exists a set P of 14 binary patterns such that if 𝑈 ∈ L8 and lde(𝑈) ≥ 2, then
𝑈 ∈ P (up to row and column permutations, as well as taking transpose).

Proof. By a long case distinction using the Weight and Collision Lemmas.
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Binary patterns that are “nice”.

𝐴 =



1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1


, 𝐵 =



1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0


, . . . , 𝐾 =



1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


Binary patterns that are “not nice”.

𝐿 =



1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 1 0 0 0 0 1 1

1 0 1 0 1 0 1 0

1 0 1 0 0 1 0 1

1 0 0 1 1 0 0 1

1 0 0 1 0 1 1 0


, 𝑀 =



1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 0 0 1 0 1 1 0

0 1 1 0 1 0 0 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1


, 𝑁 =



1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 0 0 1 0 1 1 0

0 1 1 0 0 1 1 0

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0


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
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Definition
A matrix 𝑈 ∈ Z8×82 is row-paired if identical rows occur evenly many times.

Definition
A matrix 𝑈 ∈ Z8×82 is column-paired if identical columns occur evenly many
times.

Remark: We demonstrate an example and a counterexample when 𝑛 = 4.

Example: Row-paired and column-paired

𝑈 =


0 1 0 1
1 1 1 1
0 1 0 1
1 1 1 1



Example: Only column-paired

𝑉 =


0 1 0 1
1 1 1 1
0 1 0 1
0 1 0 1


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Theorem (Row-paired Reduction)

If 𝑈 ∈ L8 and 𝑈 is row-paired, then there exists 𝑃 ∈ 𝑆8 such that
lde√2 (((𝐼 ⊗ 𝐻) 𝑃)𝑈) < lde√2 (𝑈).

Theorem (Column-paired Reduction)

If 𝑈 ∈ L8 and 𝑈 is column-paired, then there exists 𝑃 ∈ 𝑆8 such that
lde√2 (𝑈 (𝑃 (𝐼 ⊗ 𝐻))) < lde√2 (𝑈).

Remark: Below we sketch the proof for the Row-paired Reduction using a 6 × 6
matrix as an example.
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Proof. Consider 𝑈 ∈ L6 with lde√
2
(𝑈) = 𝑘 . Since 𝑈 is row-paired, there exists 𝑃 ∈ 𝑆6 such

that

𝑃𝑈 =
1

√
2
𝑘


𝑟1
𝑟2
...

𝑟6

 , where 𝑟1 ≡ 𝑟2 (2), 𝑟3 ≡ 𝑟4 (2), 𝑟5 ≡ 𝑟6 (2). Now

𝐻 =
1
√
2

[
1 1
1 −1

]
and 𝐼 ⊗ 𝐻 =


𝐻 0 0
0 𝐻 0
0 0 𝐻

 . Therefore,

(𝐼 ⊗ 𝐻) 𝑃𝑈 =
1

√
2
𝑘+1



𝑟1 + 𝑟2
𝑟1 − 𝑟2
𝑟3 + 𝑟4
𝑟3 − 𝑟4
𝑟5 + 𝑟6
𝑟5 − 𝑟6


=

2
√
2
𝑘+1


𝑟′1
...

𝑟′6

 =
1

√
2
𝑘−1


𝑟′1
...

𝑟′6

 , where 𝑟′1, . . . , 𝑟
′
6 ∈ Z1×6.

Hence lde√
2
(((𝐼 ⊗ 𝐻) 𝑃)𝑈) < lde√

2
(𝑈), for some 𝑃 ∈ 𝑆6.
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Theorem
Consider 𝑈 ∈ L8 and 𝑈 is neither row-paired nor column-paired. Let
𝑈′ = (𝐼 ⊗ 𝐻)𝑈 (𝐼 ⊗ 𝐻). Then 𝑈′ is row-paired and lde√2 (𝑈′) ≤ lde√2 (𝑈).

Proof. By direct computation.
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Theorem
Let 𝑈 ∈ L8 and lde√2 (𝑈) = 𝑘 . Then there exists 𝐶 over F such that [[𝐶]] = 𝑈 and
the length of 𝐶 is 𝑂 (𝑘).

Proof. Let 𝑈 ∈ L8, proceed by induction on 𝑘 .

• 𝑘 ≤ 1, there exists 𝐶 composed of (−1)[𝛼] , 𝑋[𝛼,𝛽 ] and 𝐼 ⊗ 𝐻 such that [[𝐶]] = 𝑈
and the length of 𝐶 is 𝑂 (1).

• 𝑘 ≥ 2, 𝑈 must be one of the 14 binary patterns.

∗ If 𝑈 is nice, then lde((𝐼 ⊗ 𝐻) 𝑃𝑈) ≤ 𝑘 − 1 and proceed recursively with (𝐼 ⊗ 𝐻) 𝑃𝑈.

∗ If𝑈 is not nice, then (𝐼 ⊗ 𝐻)𝑈 (𝐼 ⊗ 𝐻) is nice so lde ((𝐼 ⊗ 𝐻) 𝑃 (𝐼 ⊗ 𝐻)𝑈 (𝐼 ⊗ 𝐻)) ≤ 𝑘 −1
and proceed recursively with (𝐼 ⊗ 𝐻) 𝑃 (𝐼 ⊗ 𝐻)𝑈 (𝐼 ⊗ 𝐻).
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• L8 is generated by F =
{
(−1)[𝛼] , 𝑋[𝛼,𝛽 ] , 𝐾[𝛼,𝛽,𝛾, 𝛿 ] , 𝐼 ⊗ 𝐻 : 1 ≤ 𝛼 < 𝛽 < 𝛾 < 𝛿 ≤ 8

}
.

• O8 is generated by G =
{
(−1)[𝛼] , 𝑋[𝛼,𝛽 ] , 𝐾[𝛼,𝛽,𝛾, 𝛿 ] : 1 ≤ 𝛼 < 𝛽 < 𝛾 < 𝛿 ≤ 8

}
.

(𝐼 ⊗ 𝐻) (𝐼 ⊗ 𝐻) = 𝜖 (1)
(𝐼 ⊗ 𝐻) (−1)[1] = (−1)[1]𝑋[1,2] (−1)[1] (𝐼 ⊗ 𝐻) (2)
(𝐼 ⊗ 𝐻)𝑋[𝑎,𝑎+1] = (−1)𝑎+1[𝑎+1]𝑋

𝑎
[𝑎,𝑎+1]𝐾

𝑎
[𝑎−1,𝑎,𝑎+1,𝑎+2] (𝐼 ⊗ 𝐻) (3)

(𝐼 ⊗ 𝐻)𝐾[1,2,3,4] = 𝐾[1,2,3,4] (𝐼 ⊗ 𝐻) (4)

Intuition: Commuting 𝐼 ⊗ 𝐻 with an element in G adds 𝑂 (1) gates.

3Sarah Meng Li, Neil J Ross, and Peter Selinger (2021). “Generators and relations for the group
𝑂𝑛 (Z[1/2] )”. In: arXiv preprint arXiv:2106.01175.
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Lemma
For any 𝑀 over G, there exists 𝑀 ′ over G such that (𝐼 ⊗ 𝐻) 𝑀 = 𝑀 ′ (𝐼 ⊗ 𝐻).
Moreover, if 𝑀 has length 𝑂 (𝑚), then 𝑀 ′ has length 𝑂 (𝑚).

Example:

(𝐼 ⊗ 𝐻)𝐾[1,2,3,4] (−1)[1]𝑋[1,2] (𝐼 ⊗ 𝐻) = 𝐾[1,2,3,4] (𝐼 ⊗ 𝐻) (−1)[1]𝑋[1,2] (𝐼 ⊗ 𝐻)
= 𝐾[1,2,3,4] (−1)[1]𝑋[1,2] (−1)[1] (𝐼 ⊗ 𝐻)𝑋[1,2] (𝐼 ⊗ 𝐻)
= 𝐾[1,2,3,4] (−1)[1]𝑋[1,2] (−1)[1] (−1)[2] (𝐼 ⊗ 𝐻) (𝐼 ⊗ 𝐻)
= 𝐾[1,2,3,4] (−1)[1]𝑋[1,2] (−1)[1] (−1)[2] .
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Theorem
Let 𝑈 ∈ O8 and lde(𝑈) = 𝑘 ≥ 1. Then there exists 𝐶 over G such that [[𝐶]] = 𝑈 and
the length of 𝐶 is 𝑂 (𝑘).

Proof. Let 𝑈 ∈ O8 and lde(𝑈) = 𝑘 . Then 𝑈 ∈ L8 with lde√
2
(𝑈) = 2𝑘 . Using the global

synthesis for L8, we can express 𝑈 as a word 𝑊 over F with evenly many occurrences of
𝐼 ⊗ 𝐻, and the length of 𝑊 is 𝑂 (𝑘). Consider any subword 𝑊𝑖 of the form

(𝐼 ⊗ 𝐻) 𝐶 (𝐼 ⊗ 𝐻) ,

where 𝐶 does not contain 𝐼 ⊗ 𝐻.
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Theorem
Consider 𝑈 ∈ O8 and lde(𝑈) = 𝑘 ≥ 1. Then there exists 𝐶 over G such that [[𝐶]] = 𝑈
and the length of 𝐶 is 𝑂 (𝑘).

Proof Continued. Suppose the length of 𝑊𝑖 is 𝑂 (𝑘). Then

𝑊𝑖 = (𝐼 ⊗ 𝐻) 𝐶 (𝐼 ⊗ 𝐻) −→ 𝐶′ (𝐼 ⊗ 𝐻) (𝐼 ⊗ 𝐻) −→ 𝐶′

𝑊𝑖 can be rewritten as a word 𝐶′ over G of length at most 3 ∗𝑂 (𝑘) generators. Hence we
can rewrite 𝑊 as a word 𝑊 ′ over G of length no more than 3 ∗𝑂 (𝑘).
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• Benchmark our global synthesis algorithm with other state-of-the-art
algorithms to compare their performance in practice.

• Design a standalone global synthesis for O8, rather than relying on the
corresponding result for L8 and the commutation of generators.

• Extend the global synthesis to arbitrary dimensions: O𝑛 and L𝑛.

• Present the global synthesis results of O𝑛 and L𝑛 in terms of the restricted
Clifford+T circuits over {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐾} and {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐻} respectively.
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Thank you!


