
Improved Synthesis of Toffoli-Hadamard
Circuits
Matthew Amy1, Andrew N. Glaudell2, Sarah Meng Li3, Neil J. Ross2

1School of Computing Science, Simon Fraser University
2Photonic Inc.
3Institute for Quantum Computing, University of Waterloo
4Department of Mathematics and Statistics, Dalhousie University

April 3rd, 2023

Quantum Algorithm: Carrying out a well-defined task.

Quantum Compilation: Program ⇒ Sequence of elementary quantum gates.

Implementation: Mapping unitary operations to physical architectures.

1

Background

Quantum Algorithm: Carrying out a well-defined task.

Quantum Compilation: Program ⇒ Sequence of elementary quantum gates.

Implementation: Mapping unitary operations to physical architectures.

1

Background

Quantum Algorithm: Carrying out a well-defined task.

Quantum Compilation: Program ⇒ Sequence of elementary quantum gates.

Implementation: Mapping unitary operations to physical architectures.

1

Background

Toffoli-Hadamard circuits are quantum circuits over the gate set

{𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐻}.

• • 𝐻

𝑋 • 𝑋 𝑋 • 𝑋

𝐻 • 𝑋 • 𝐻 • 𝑋 •
𝐻 𝑋 𝐻

1Amy, M., Glaudell, A. N., & Ross, N. J. (2020). Number-theoretic characterizations of some
restricted Clifford+T circuits. Quantum, 4, 252.

2

Restricted Clifford+T Circuits1

• 𝐻 •
𝑋 • 𝑋 𝐻 𝑋 • 𝑋

𝐻 • 𝑋 • • 𝑋 •
𝐻 𝑋

A Toffoli-Hadamard Circuit

•
𝐾

•
𝑋 • 𝑋 𝑋 • 𝑋

𝐾
• 𝑋 • • 𝑋 •
𝑋

A Toffoli-K Circuit
3

Restricted Clifford+T Circuits

(−1) = [−1]

𝐻 =
1
√
2

[
1 1
1 −1

]
, 𝐾 = 𝐻 ⊗ 𝐻 =

1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


𝑋 =

[
0 1

1 0

]
, 𝐶𝑋 =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


=

[
𝐼2 0

0 𝑋

]
, 𝐶𝐶𝑋 =

[
𝐼6 0

0 𝑋

]

4

Basic Gates

• A family of quantum circuits corresponds to a group of matrices.

• Studying matrix groups is a way to study quantum circuits.

5

The Circuit-Matrix Correspondence

• L𝑛 is the group of orthogonal scaled dyadic matrices , which consists of
𝑛 × 𝑛 orthogonal matrices of the form 𝑀/

√
2𝑘 , where 𝑀 is an integer matrix

and 𝑘 is a nonnegative integer.

• Example: 𝑉 ∈ L4

𝑉 =
1
√
2


1 0 −1 0
0 −1 0 −1
1 0 1 0
0 1 0 −1



6

Orthogonal Scaled Dyadic Matrices

• L𝑛 is the group of orthogonal scaled dyadic matrices , which consists of
𝑛 × 𝑛 orthogonal matrices of the form 𝑀/

√
2𝑘 , where 𝑀 is an integer matrix

and 𝑘 is a nonnegative integer.

• Example: 𝑉 ∈ L4

𝑉 =
1
√
2


1 0 −1 0
0 −1 0 −1
1 0 1 0
0 1 0 −1


6

Orthogonal Scaled Dyadic Matrices

• Z
[
1
2

]
=
{
𝑢
2𝑞 |𝑢 ∈ Z, 𝑞 ∈ N

}
is the ring of dyadic fractions.

• O𝑛
(
Z
[
1
2

])
is the group of orthogonal dyadic matrices, which consists of

𝑛 × 𝑛 orthogonal matrices of the form 𝑀/2𝑘 , where 𝑀 is an integer matrix
and 𝑘 is a nonnegative integer. For short, we denote it as O𝑛.

• Example: 𝑈 ∈ O5

𝑈 =


3/4 1/4 −1/4 1/4 1/2
1/4 3/4 1/4 −1/4 −1/2

−1/4 1/4 3/4 1/4 1/2
1/4 −1/4 1/4 3/4 −1/2

−1/2 1/2 −1/2 1/2 0



7

Orthogonal Dyadic Matrices

• Z
[
1
2

]
=
{
𝑢
2𝑞 |𝑢 ∈ Z, 𝑞 ∈ N

}
is the ring of dyadic fractions.

• O𝑛
(
Z
[
1
2

])
is the group of orthogonal dyadic matrices, which consists of

𝑛 × 𝑛 orthogonal matrices of the form 𝑀/2𝑘 , where 𝑀 is an integer matrix
and 𝑘 is a nonnegative integer. For short, we denote it as O𝑛.

• Example: 𝑈 ∈ O5

𝑈 =


3/4 1/4 −1/4 1/4 1/2
1/4 3/4 1/4 −1/4 −1/2

−1/4 1/4 3/4 1/4 1/2
1/4 −1/4 1/4 3/4 −1/2

−1/2 1/2 −1/2 1/2 0



7

Orthogonal Dyadic Matrices

• Z
[
1
2

]
=
{
𝑢
2𝑞 |𝑢 ∈ Z, 𝑞 ∈ N

}
is the ring of dyadic fractions.

• O𝑛
(
Z
[
1
2

])
is the group of orthogonal dyadic matrices, which consists of

𝑛 × 𝑛 orthogonal matrices of the form 𝑀/2𝑘 , where 𝑀 is an integer matrix
and 𝑘 is a nonnegative integer. For short, we denote it as O𝑛.

• Example: 𝑈 ∈ O5

𝑈 =


3/4 1/4 −1/4 1/4 1/2
1/4 3/4 1/4 −1/4 −1/2

−1/4 1/4 3/4 1/4 1/2
1/4 −1/4 1/4 3/4 −1/2

−1/2 1/2 −1/2 1/2 0


7

Orthogonal Dyadic Matrices

• Z
[
1
2

]
=
{
𝑢
2𝑞 |𝑢 ∈ Z, 𝑞 ∈ N

}
is the ring of dyadic fractions.

• O𝑛
(
Z
[
1
2

])
is the group of orthogonal dyadic matrices, which consists of

𝑛 × 𝑛 orthogonal matrices of the form 𝑀/2𝑘 , where 𝑀 is an integer matrix
and 𝑘 is a nonnegative integer. For short, we denote it as O𝑛.

• Example: 𝑈 ∈ O5

𝑈 =


3/4 1/4 −1/4 1/4 1/2
1/4 3/4 1/4 −1/4 −1/2

−1/4 1/4 3/4 1/4 1/2
1/4 −1/4 1/4 3/4 −1/2

−1/2 1/2 −1/2 1/2 0


7

Orthogonal Dyadic Matrices

• Z
[
1
2

]
=
{
𝑢
2𝑞 |𝑢 ∈ Z, 𝑞 ∈ N

}
is the ring of dyadic fractions.

• O𝑛
(
Z
[
1
2

])
is the group of orthogonal dyadic matrices, which consists of

𝑛 × 𝑛 orthogonal matrices of the form 𝑀/2𝑘 , where 𝑀 is an integer matrix
and 𝑘 is a nonnegative integer. For short, we denote it as O𝑛.

• Example: 𝑈 ∈ O5

𝑈 =
1

22


3 1 −1 1 2
1 3 1 −1 −2

−1 1 3 1 2
1 −1 1 3 −2

−2 2 −2 2 0


7

Orthogonal Dyadic Matrices

• L𝑛 is the group of orthogonal scaled dyadic matrices , which consists of
𝑛 × 𝑛 orthogonal matrices of the form 𝑀/

√
2𝑘 , where 𝑀 is an integer matrix

and 𝑘 is a nonnegative integer.

• O𝑛 is the group of orthogonal dyadic matrices, which consists of 𝑛 × 𝑛
orthogonal matrices of the form 𝑀/2𝑘 , where 𝑀 is an integer matrix and 𝑘

is a nonnegative integer.

• O𝑛 ⊂ L𝑛.

Example: 𝑉 ∈ L4

𝑉 =
1
√
2


1 0 −1 0
0 −1 0 −1
1 0 1 0
0 1 0 −1



Example: 𝑈 ∈ O4

𝑈 =
1

2


1 −1 −1 −1
1 1 −1 1
1 1 1 −1
1 −1 1 1


8

Orthogonal (Scaled) Dyadic Matrices

• L𝑛 is the group of orthogonal scaled dyadic matrices , which consists of
𝑛 × 𝑛 orthogonal matrices of the form 𝑀/

√
2𝑘 , where 𝑀 is an integer matrix

and 𝑘 is a nonnegative integer.

• O𝑛 is the group of orthogonal dyadic matrices, which consists of 𝑛 × 𝑛
orthogonal matrices of the form 𝑀/2𝑘 , where 𝑀 is an integer matrix and 𝑘

is a nonnegative integer.

• O𝑛 ⊂ L𝑛.

Example: 𝑉 ∈ L4

𝑉 =
1
√
2


1 0 −1 0
0 −1 0 −1
1 0 1 0
0 1 0 −1



Example: 𝑈 ∈ O4

𝑈 =
1

√
2
2


1 −1 −1 −1
1 1 −1 1
1 1 1 −1
1 −1 1 1


8

Orthogonal (Scaled) Dyadic Matrices

Let G be a group and let S be a set of generators for G. The constructive
membership problem for G and S, denoted P(G,S), is the following:

Given 𝑔 ∈ G, find a sequence of generators 𝑠1, . . . , 𝑠ℓ ∈ S such that

𝑠1 · . . . · 𝑠ℓ = 𝑔,

where · is the group operation.

• The smaller the ℓ, the better the solution.

• A solution is optimal if the sequence is a shortest possible sequence.

• An algorithm to solve the CMP is called an exact synthesis algorithm.

9

Constructive Membership Problem (CMP)

Let G be a group and let S be a set of generators for G. The constructive
membership problem for G and S, denoted P(G,S), is the following:

Given 𝑔 ∈ G, find a sequence of generators 𝑠1, . . . , 𝑠ℓ ∈ S such that

𝑠1 · . . . · 𝑠ℓ = 𝑔,

where · is the group operation.

• The smaller the ℓ, the better the solution.

• A solution is optimal if the sequence is a shortest possible sequence.

• An algorithm to solve the CMP is called an exact synthesis algorithm.

9

Constructive Membership Problem (CMP)

Let G be a group and let S be a set of generators for G. The constructive
membership problem for G and S, denoted P(G,S), is the following:

Given 𝑔 ∈ G, find a sequence of generators 𝑠1, . . . , 𝑠ℓ ∈ S such that

𝑠1 · . . . · 𝑠ℓ = 𝑔,

where · is the group operation.

• The smaller the ℓ, the better the solution.

• A solution is optimal if the sequence is a shortest possible sequence.

• An algorithm to solve the CMP is called an exact synthesis algorithm.

9

Constructive Membership Problem (CMP)

Theorem (Solutions to CMP: The AGR Algorithm1)

For an n-dimensional orthogonal matrix 𝑈,

− it can be exactly represented by a circuit over {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐻} iff 𝑈 ∈ L𝑛.

− it can be exactly represented by a circuit over {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐾} iff 𝑈 ∈ O𝑛.

The gate complexity of the AGR algorithm in both cases is 𝑂 (2𝑛 log(𝑛)𝑘).

• A good solution to CMP yields shorter quantum circuits.

• Can we find a good solution to the CMP for O𝑛 and L𝑛?

1Amy, M., Glaudell, A. N., & Ross, N. J. (2020). Number-theoretic characterizations of some
restricted Clifford+T circuits. Quantum, 4, 252.

10

The Circuit-Matrix Correspondence I

Theorem (Solutions to CMP: The AGR Algorithm1)

For an n-dimensional orthogonal matrix 𝑈,

− it can be exactly represented by a circuit over {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐻} iff 𝑈 ∈ L𝑛.

− it can be exactly represented by a circuit over {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐾} iff 𝑈 ∈ O𝑛.

The gate complexity of the AGR algorithm in both cases is 𝑂 (2𝑛 log(𝑛)𝑘).

• A good solution to CMP yields shorter quantum circuits.

• Can we find a good solution to the CMP for O𝑛 and L𝑛?

1Amy, M., Glaudell, A. N., & Ross, N. J. (2020). Number-theoretic characterizations of some
restricted Clifford+T circuits. Quantum, 4, 252.

10

The Circuit-Matrix Correspondence I

Definition

Let 𝑈 =

[
𝑥1,1 𝑥1,2
𝑥2,1 𝑥2,2

]
. The action of 𝑈[𝛼,𝛽] , 1 ≤ 𝛼 < 𝛽 ≤ 𝑛, is defined as

𝑈[𝛼,𝛽]𝑣 = 𝑤, where

[
𝑤𝛼
𝑤𝛽

]
= 𝑈

[
𝑣𝛼
𝑣𝛽

]
,

𝑤𝑖 = 𝑣𝑖 , 𝑖 ∉ {𝛼, 𝛽}.

Example:

Let 𝑋 =

[
0 1
1 0

]
. Then 𝑋[2,3] =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 and 𝑋[2,3]


𝑣1
𝑣2
𝑣3
𝑣4

 =

𝑣1
𝑣3
𝑣2
𝑣4

 .
11

Two-level Operator: 𝑈[𝛼,𝛽]

Similarly, we can create a four-level operator by embedding a 4 × 4 matrix U
into an 𝑛 × 𝑛 identity matrix.

Let 𝐾 =
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 . Then 𝐾[1,2,4,6] =



1/2 1/2 0 1/2 0 1/2
1/2 −1/2 0 1/2 0 −1/2
0 0 1 0 0 0
1/2 1/2 0 −1/2 0 −1/2
0 0 0 0 1 0
1/2 −1/2 0 −1/2 0 1/2


.

𝐾[1,2,4,6]



𝑣1
𝑣2
𝑣3
𝑣4
𝑣5
𝑣6


=



(𝑣1 + 𝑣2 + 𝑣4 + 𝑣6)/2
(𝑣1 − 𝑣2 + 𝑣4 − 𝑣6)/2

𝑣3
(𝑣1 + 𝑣2 − 𝑣4 − 𝑣6)/2

𝑣5
(𝑣1 − 𝑣2 − 𝑣4 + 𝑣6)/2


.

12

Four-level Operator: 𝑈[𝛼,𝛽,𝛾,𝛿]

F𝑛 =
{
(−1)[𝛼] , 𝑋[𝛼,𝛽] , 𝐾[𝛼,𝛽,𝛾, 𝛿] , 𝐼𝑛/2 ⊗ 𝐻 : 1 ≤ 𝛼 < 𝛽 < 𝛾 < 𝛿 ≤ 𝑛

}
.

G𝑛 =
{
(−1)[𝛼] , 𝑋[𝛼,𝛽] , 𝐾[𝛼,𝛽,𝛾, 𝛿] : 1 ≤ 𝛼 < 𝛽 < 𝛾 < 𝛿 ≤ 𝑛

}
.

Theorem (Solutions to CMP: The AGR Algorithm1)

Let 𝑈 be an 𝑛 × 𝑛matrix.
− 𝑈 ∈ L𝑛 iff 𝑈 can be written as a product of elements of F𝑛.

− 𝑈 ∈ O𝑛 iff 𝑈 can be written as a product of elements of G𝑛.

• When 𝑛 = 2𝑚, every operator in G𝑛 and F𝑛 can be exactly represented by
𝑂 (log(𝑛)) operators in {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐾} and {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐻}, respectively.

1Amy, M., Glaudell, A. N., & Ross, N. J. (2020). Number-theoretic characterizations of some
restricted Clifford+T circuits. Quantum, 4, 252.

13

The Circuit-Matrix Correspondence II

Let 𝑡 ∈ Z
[
1
2

]
. 𝑡 = 𝑎

2𝑘
, where 𝑎 ∈ Z and 𝑘 ∈ N. 𝑘 is a denominator exponent for 𝑡. The

minimal such 𝑘 is called the least denominator exponent of 𝑡, written lde(𝑡).

Example: LDE of a column vector

𝑣 =
1

27



54
62
98
2
2
2
2
2


=

2

27



27
31
49
1
1
1
1
1


=

1

26



27
31
49
1
1
1
1
1


lde(𝑣) = 6

Example: LDE of a matrix

𝑈 =
1

2



−1 1 1 0 1 0 0 0
−1 −1 0 1 0 1 0 0
−1 1 −1 0 −1 0 0 0
−1 −1 0 −1 0 −1 0 0
0 0 1 1 −1 −1 0 0
0 0 1 −1 −1 1 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2


lde(𝑈) = 1

14

The Least Denominator Exponent (LDE)

Let 𝑡 ∈ Z
[
1
2

]
. 𝑡 = 𝑎

2𝑘
, where 𝑎 ∈ Z and 𝑘 ∈ N. 𝑘 is a denominator exponent for 𝑡. The

minimal such 𝑘 is called the least denominator exponent of 𝑡, written lde(𝑡).

Example: LDE of a column vector

𝑣 =
1

27



54
62
98
2
2
2
2
2


=

2

27



27
31
49
1
1
1
1
1


=

1

26



27
31
49
1
1
1
1
1


lde(𝑣) = 6

Example: LDE of a matrix

𝑈 =
1

2



−1 1 1 0 1 0 0 0
−1 −1 0 1 0 1 0 0
−1 1 −1 0 −1 0 0 0
−1 −1 0 −1 0 −1 0 0
0 0 1 1 −1 −1 0 0
0 0 1 −1 −1 1 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2


lde(𝑈) = 1

14

The Least Denominator Exponent (LDE)

Let 𝑡 ∈ Z
[
1
2

]
. 𝑡 = 𝑎

2𝑘
, where 𝑎 ∈ Z and 𝑘 ∈ N. 𝑘 is a denominator exponent for 𝑡. The

minimal such 𝑘 is called the least denominator exponent of 𝑡, written lde(𝑡).

Example: LDE of a column vector

𝑣 =
1

27



54
62
98
2
2
2
2
2


=

2

27



27
31
49
1
1
1
1
1


=

1

26



27
31
49
1
1
1
1
1


lde(𝑣) = 6

Example: LDE of a matrix

𝑈 =
1

2



−1 1 1 0 1 0 0 0
−1 −1 0 1 0 1 0 0
−1 1 −1 0 −1 0 0 0
−1 −1 0 −1 0 −1 0 0
0 0 1 1 −1 −1 0 0
0 0 1 −1 −1 1 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2


lde(𝑈) = 1

14

The Least Denominator Exponent (LDE)

Lemma (Base Case)

Let 𝑣 ∈ Z
[
1
2

]𝑛 be a unit vector. Let 𝑘 = lde(𝑣). If 𝑘 = 0, then 𝑣 = ±𝑒 𝑗 for some
𝑗 ∈ {1, . . . , 𝑛}.

Lemma (Count)

Let 𝑣 ∈ Z
[
1
2

]𝑛 be a unit vector, and lde(𝑣) = 𝑘 > 0. Let 𝑤 = 2𝑘𝑣. Then the number of
odd entries in 𝑤 is a multiple of 4.

Lemma (Parity Reduction)

Let 𝑢1, 𝑢2, 𝑢3, 𝑢4 be odd integers. Then there exist 𝜏1, 𝜏2, 𝜏3, 𝜏4 ∈ Z2 such that

𝐾[1,2,3,4] (−1)𝜏1[1] (−1)
𝜏2
[2] (−1)

𝜏3
[3] (−1)

𝜏4
[4]


𝑢1
𝑢2
𝑢3
𝑢4

 =

𝑢′1
𝑢′2
𝑢′3
𝑢′4

 , 𝑢
′
1, 𝑢

′
2, 𝑢

′
3, 𝑢

′
4 are even integers.

15

Example: Input: 𝑣 ∈ Z
[
1
2

]8 Output: 𝐺1, 𝐺2, 𝐺3 Result: 𝐺3 · 𝐺2 · 𝐺1 · 𝑣 = 𝑒1

𝑣 :
1

4

©­­­­­­­­­­­­­«

−1
1

−1
−1
3

1

1

1

ª®®®®®®®®®®®®®¬
lde(𝑣) = 2

𝐺1=𝐾[1,2,3,4] (−1) [4] (−1) [3] (−1) [1]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝑣′ :

1

4

©­­­­­­­­­­­­­«

2

0

0

0

3

1

1

1

ª®®®®®®®®®®®®®¬
lde(𝑣′) = 2

𝐺2=𝐾[5,6,7,8] (−1) [5]
−−−−−−−−−−−−−−−−−→

𝑣′′ :
1

4

©­­­­­­­­­­­­­«

2

0

0

0

0

−2
−2
−2

ª®®®®®®®®®®®®®¬
=

1

2

©­­­­­­­­­­­­­«

1

0

0

0

0

−1
−1
−1

ª®®®®®®®®®®®®®¬
lde(𝑣′′) = 1

𝐺3=𝐾[1,6,7,8] (−1) [8] (−1) [7] (−1) [6]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝑣′′′ :

1

2

©­­­­­­­­­­­­­«

2

0

0

0

0

0

0

0

ª®®®®®®®®®®®®®¬
=

©­­­­­­­­­­­­­«

1

0

0

0

0

0

0

0

ª®®®®®®®®®®®®®¬
= 𝑒1

lde(𝑣′′′) = 0

.

16

The AGR Algorithm (I)

• The algorithm proceeds one column at a time, reducing each column to a
corresponding basis vector.

• While outputting a word
−→
𝐺ℓ after each iteration, the algorithm recursively

acts on the input matrix until it is reduced to the identity matrix I.

𝑀

−→
𝐺1−−→

©­­­­«
0

𝑀 ′ ...

0
0 · · · 0 1

ª®®®®¬
−→
𝐺2−−→

©­­­­­­«

0 0

𝑀 ′′ ...
...

0 0
0 · · · 0 1 0
0 · · · 0 0 1

ª®®®®®®¬
−→
𝐺3−−→ · · ·

−→
𝐺ℓ−−→ I

−→
𝐺ℓ · · · · ·

−→
𝐺1𝑀 = I⇒ 𝑀 =

−→
𝐺1

−1 · · · · · −→𝐺ℓ−1

17

The AGR Algorithm (II)

• The algorithm proceeds one column at a time, reducing each column to a
corresponding basis vector.

• While outputting a word
−→
𝐺ℓ after each iteration, the algorithm recursively

acts on the input matrix until it is reduced to the identity matrix I.

𝑀

−→
𝐺1−−→

©­­­­«
0

𝑀 ′ ...

0
0 · · · 0 1

ª®®®®¬
−→
𝐺2−−→

©­­­­­­«

0 0

𝑀 ′′ ...
...

0 0
0 · · · 0 1 0
0 · · · 0 0 1

ª®®®®®®¬
−→
𝐺3−−→ · · ·

−→
𝐺ℓ−−→ I

en

−→
𝐺ℓ · · · · ·

−→
𝐺1𝑀 = I⇒ 𝑀 =

−→
𝐺1

−1 · · · · · −→𝐺ℓ−1

17

The AGR Algorithm (II)

• The algorithm proceeds one column at a time, reducing each column to a
corresponding basis vector.

• While outputting a word
−→
𝐺ℓ after each iteration, the algorithm recursively

acts on the input matrix until it is reduced to the identity matrix I.

𝑀

−→
𝐺1−−→

©­­­­«
0

𝑀 ′ ...

0
0 · · · 0 1

ª®®®®¬
−→
𝐺2−−→

©­­­­­­«

0 0

𝑀 ′′ ...
...

0 0
0 · · · 0 1 0
0 · · · 0 0 1

ª®®®®®®¬
−→
𝐺3−−→ · · ·

−→
𝐺ℓ−−→ I

en en−1
−→
𝐺ℓ · · · · ·

−→
𝐺1𝑀 = I⇒ 𝑀 =

−→
𝐺1

−1 · · · · · −→𝐺ℓ−1

17

The AGR Algorithm (II)

Lemma
Let u ∈ Z

[
1
2

]𝑛 with lde(u) = 𝑘 . The number of generators in G𝑛 to reduce u to e 𝑗 is
𝑂 (𝑛𝑘).

Theorem
Let 𝑈 ∈ O𝑛 with lde(𝑈) = 𝑘 . 𝑈 can be exactly represented by 𝑂 (2𝑛𝑘) generators
over G𝑛.

Proof. Let 𝑓u𝑖 be the cost of reducing u𝑖 to e𝑖 .
• Each row operation may increase the lde of any column in U by 1.
• During reduction, the lde of any other column may increase up to 2𝑘 .

𝑓u1 = 𝑂 (𝑛𝑘) , 𝑓u2 = 𝑂 ((𝑛 − 1)2𝑘) , 𝑓u3 = 𝑂
(
(𝑛 − 2)22𝑘

)
, . . . , 𝑓u𝑛 = 𝑂

(
2𝑛−1𝑘

)
.

𝑆𝑛 =

𝑛∑︁
𝑖=1

𝑓u𝑖 =

𝑛∑︁
𝑖=1

(𝑛 − 𝑖 + 1)2𝑖−1𝑘 = 𝑂 (2𝑛𝑘).

□ 18

Gate Complexity of the AGR Algorithm

With ancillary qubits, the gate complexity of the exact synthesis for L𝑛 over F𝑛
is reduced from 𝑂 (2𝑛𝑘) to 𝑂 (𝑛2𝑘) .

Definition
For an 𝑛-dimensional unit vector |𝜓⟩, the reflection operator around |𝜓⟩ is

𝑅 |𝜓⟩ = 𝐼 − 2 |𝜓⟩ ⟨𝜓 | .

Proposition: Gate Complexity of the Reflection Operator

Let |𝜓⟩ = v/
√
2
𝑘

be an 𝑛-dimensional unit vector with lde√2 (|𝜓⟩) = 𝑘 , v is an integer
vector. The reflection operator 𝑅 |𝜓⟩ can be exactly represented by 𝑂 (𝑛𝑘)
generators over F𝑛.

2Vadym Kliuchnikov (2013). “Synthesis of unitaries with Clifford+ T circuits”. In: arXiv preprint
arXiv:1306.3200.

19

The Householder Algorithm2

With ancillary qubits, the gate complexity of the exact synthesis for L𝑛 over F𝑛
is reduced from 𝑂 (2𝑛𝑘) to 𝑂 (𝑛2𝑘) .

Definition
For an 𝑛-dimensional unit vector |𝜓⟩, the reflection operator around |𝜓⟩ is

𝑅 |𝜓⟩ = 𝐼 − 2 |𝜓⟩ ⟨𝜓 | .

Proposition: Gate Complexity of the Reflection Operator

Let |𝜓⟩ = v/
√
2
𝑘

be an 𝑛-dimensional unit vector with lde√2 (|𝜓⟩) = 𝑘 , v is an integer
vector. The reflection operator 𝑅 |𝜓⟩ can be exactly represented by 𝑂 (𝑛𝑘)
generators over F𝑛.

2Vadym Kliuchnikov (2013). “Synthesis of unitaries with Clifford+ T circuits”. In: arXiv preprint
arXiv:1306.3200.

19

The Householder Algorithm2

With ancillary qubits, the gate complexity of the exact synthesis for L𝑛 over F𝑛
is reduced from 𝑂 (2𝑛𝑘) to 𝑂 (𝑛2𝑘) .

Definition
For an 𝑛-dimensional unit vector |𝜓⟩, the reflection operator around |𝜓⟩ is

𝑅 |𝜓⟩ = 𝐼 − 2 |𝜓⟩ ⟨𝜓 | .

Proposition: Gate Complexity of the Reflection Operator

Let |𝜓⟩ = v/
√
2
𝑘

be an 𝑛-dimensional unit vector with lde√2 (|𝜓⟩) = 𝑘 , v is an integer
vector. The reflection operator 𝑅 |𝜓⟩ can be exactly represented by 𝑂 (𝑛𝑘)
generators over F𝑛.

2Vadym Kliuchnikov (2013). “Synthesis of unitaries with Clifford+ T circuits”. In: arXiv preprint
arXiv:1306.3200.

19

The Householder Algorithm2

Let 𝑈 ∈ L𝑛. Then 𝑈 can be simulated using the unitary

𝑈′ = |+⟩ ⟨−| ⊗ 𝑈 + |−⟩ ⟨+| ⊗ 𝑈†.

Moreover, 𝑈′ ∈ L2𝑛 and 𝑈′ can be factored as a product 𝑈′ =
∏𝑛
𝑗=1 𝑅 |𝜔−

𝑗
⟩ of

reflection operators around vectors

|𝜔−
𝑗 ⟩ =

(
|−⟩ | 𝑗⟩ − |+⟩ |u 𝑗⟩

)
√
2

,

u 𝑗 is the 𝑗-th column vector in 𝑈 and | 𝑗⟩ is the 𝑗-th computational basis vector.

𝑈′|−⟩ |+⟩

𝑈
...|𝜓⟩ ... 𝑈 |𝜓⟩

• 𝐼 =
∑𝑛
𝑗=1

(
|𝜔+
𝑗
⟩ ⟨𝜔+

𝑗
| + |𝜔−

𝑗
⟩ ⟨𝜔−

𝑗
|
)

The completeness relation.

• 𝑈′ =
∑𝑛
𝑗=1

(
|𝜔+
𝑗
⟩ ⟨𝜔+

𝑗
| − |𝜔−

𝑗
⟩ ⟨𝜔−

𝑗
|
)

The spectral theorem.

𝐼 −𝑈′ = 2
𝑛∑︁
𝑗=1

|𝜔−
𝑗 ⟩ ⟨𝜔−

𝑗 | ⇒ 𝑈′ = 𝐼 − 2
𝑛∑︁
𝑗=1

|𝜔−
𝑗 ⟩ ⟨𝜔−

𝑗 | =
𝑛∏
𝑗=1

𝑅 |𝜔−
𝑗
⟩ .

20

Unitary Simulation

Let 𝑈 ∈ L𝑛. Then 𝑈 can be simulated using the unitary

𝑈′ = |+⟩ ⟨−| ⊗ 𝑈 + |−⟩ ⟨+| ⊗ 𝑈†.

Moreover, 𝑈′ ∈ L2𝑛 and 𝑈′ can be factored as a product 𝑈′ =
∏𝑛
𝑗=1 𝑅 |𝜔−

𝑗
⟩ of

reflection operators around vectors

|𝜔−
𝑗 ⟩ =

(
|−⟩ | 𝑗⟩ − |+⟩ |u 𝑗⟩

)
√
2

,

u 𝑗 is the 𝑗-th column vector in 𝑈 and | 𝑗⟩ is the 𝑗-th computational basis vector.

𝑈′|−⟩ |+⟩

𝑈
...|𝜓⟩ ... 𝑈 |𝜓⟩

• 𝐼 =
∑𝑛
𝑗=1

(
|𝜔+
𝑗
⟩ ⟨𝜔+

𝑗
| + |𝜔−

𝑗
⟩ ⟨𝜔−

𝑗
|
)

The completeness relation.

• 𝑈′ =
∑𝑛
𝑗=1

(
|𝜔+
𝑗
⟩ ⟨𝜔+

𝑗
| − |𝜔−

𝑗
⟩ ⟨𝜔−

𝑗
|
)

The spectral theorem.

𝐼 −𝑈′ = 2
𝑛∑︁
𝑗=1

|𝜔−
𝑗 ⟩ ⟨𝜔−

𝑗 | ⇒ 𝑈′ = 𝐼 − 2
𝑛∑︁
𝑗=1

|𝜔−
𝑗 ⟩ ⟨𝜔−

𝑗 | =
𝑛∏
𝑗=1

𝑅 |𝜔−
𝑗
⟩ .

20

Unitary Simulation

Let 𝑈 ∈ L𝑛. Then 𝑈 can be simulated using the unitary

𝑈′ = |+⟩ ⟨−| ⊗ 𝑈 + |−⟩ ⟨+| ⊗ 𝑈†.

Moreover, 𝑈′ ∈ L2𝑛 and 𝑈′ can be factored as a product 𝑈′ =
∏𝑛
𝑗=1 𝑅 |𝜔−

𝑗
⟩ of

reflection operators around vectors

|𝜔−
𝑗 ⟩ =

(
|−⟩ | 𝑗⟩ − |+⟩ |u 𝑗⟩

)
√
2

,

u 𝑗 is the 𝑗-th column vector in 𝑈 and | 𝑗⟩ is the 𝑗-th computational basis vector.

𝑈′|−⟩ |+⟩

𝑈
...|𝜓⟩ ... 𝑈 |𝜓⟩

• 𝐼 =
∑𝑛
𝑗=1

(
|𝜔+
𝑗
⟩ ⟨𝜔+

𝑗
| + |𝜔−

𝑗
⟩ ⟨𝜔−

𝑗
|
)

The completeness relation.

• 𝑈′ =
∑𝑛
𝑗=1

(
|𝜔+
𝑗
⟩ ⟨𝜔+

𝑗
| − |𝜔−

𝑗
⟩ ⟨𝜔−

𝑗
|
)

The spectral theorem.

𝐼 −𝑈′ = 2
𝑛∑︁
𝑗=1

|𝜔−
𝑗 ⟩ ⟨𝜔−

𝑗 | ⇒ 𝑈′ = 𝐼 − 2
𝑛∑︁
𝑗=1

|𝜔−
𝑗 ⟩ ⟨𝜔−

𝑗 | =
𝑛∏
𝑗=1

𝑅 |𝜔−
𝑗
⟩ .

20

Unitary Simulation

Let 𝑈 ∈ L𝑛. Then 𝑈 can be simulated using the unitary

𝑈′ = |+⟩ ⟨−| ⊗ 𝑈 + |−⟩ ⟨+| ⊗ 𝑈†.

Moreover, 𝑈′ ∈ L2𝑛 and 𝑈′ can be factored as a product 𝑈′ =
∏𝑛
𝑗=1 𝑅 |𝜔−

𝑗
⟩ of

reflection operators around vectors

|𝜔−
𝑗 ⟩ =

(
|−⟩ | 𝑗⟩ − |+⟩ |u 𝑗⟩

)
√
2

,

u 𝑗 is the 𝑗-th column vector in 𝑈 and | 𝑗⟩ is the 𝑗-th computational basis vector.

𝑈′|−⟩ |+⟩

𝑈
...|𝜓⟩ ... 𝑈 |𝜓⟩

• 𝐼 =
∑𝑛
𝑗=1

(
|𝜔+
𝑗
⟩ ⟨𝜔+

𝑗
| + |𝜔−

𝑗
⟩ ⟨𝜔−

𝑗
|
)

The completeness relation.

• 𝑈′ =
∑𝑛
𝑗=1

(
|𝜔+
𝑗
⟩ ⟨𝜔+

𝑗
| − |𝜔−

𝑗
⟩ ⟨𝜔−

𝑗
|
)

The spectral theorem.

𝐼 −𝑈′ = 2
𝑛∑︁
𝑗=1

|𝜔−
𝑗 ⟩ ⟨𝜔−

𝑗 | ⇒ 𝑈′ = 𝐼 − 2
𝑛∑︁
𝑗=1

|𝜔−
𝑗 ⟩ ⟨𝜔−

𝑗 | =
𝑛∏
𝑗=1

𝑅 |𝜔−
𝑗
⟩ .

20

Unitary Simulation

Let 𝑈 ∈ L𝑛. Then 𝑈 can be simulated using the unitary

𝑈′ = |+⟩ ⟨−| ⊗ 𝑈 + |−⟩ ⟨+| ⊗ 𝑈†.

Moreover, 𝑈′ ∈ L2𝑛 and 𝑈′ can be factored as a product 𝑈′ =
∏𝑛
𝑗=1 𝑅 |𝜔−

𝑗
⟩ of

reflection operators around vectors

|𝜔−
𝑗 ⟩ =

(
|−⟩ | 𝑗⟩ − |+⟩ |u 𝑗⟩

)
√
2

,

u 𝑗 is the 𝑗-th column vector in 𝑈 and | 𝑗⟩ is the 𝑗-th computational basis vector.

𝑈′|−⟩ |+⟩

𝑈
...|𝜓⟩ ... 𝑈 |𝜓⟩

• 𝐼 =
∑𝑛
𝑗=1

(
|𝜔+
𝑗
⟩ ⟨𝜔+

𝑗
| + |𝜔−

𝑗
⟩ ⟨𝜔−

𝑗
|
)

The completeness relation.

• 𝑈′ =
∑𝑛
𝑗=1

(
|𝜔+
𝑗
⟩ ⟨𝜔+

𝑗
| − |𝜔−

𝑗
⟩ ⟨𝜔−

𝑗
|
)

The spectral theorem.

𝐼 −𝑈′ = 2
𝑛∑︁
𝑗=1

|𝜔−
𝑗 ⟩ ⟨𝜔−

𝑗 | ⇒ 𝑈′ = 𝐼 − 2
𝑛∑︁
𝑗=1

|𝜔−
𝑗 ⟩ ⟨𝜔−

𝑗 | =
𝑛∏
𝑗=1

𝑅 |𝜔−
𝑗
⟩ .

20

Unitary Simulation

Theorem
Let 𝑈 ∈ L𝑛 with lde√2 (𝑈) = 𝑘 . Then 𝑈 can be represented by 𝑂 (𝑛2𝑘) generators
over F𝑛 using the Householder algorithm.

Proof. We showed that 𝑈 can be simulated by 𝑈′ where

𝑈′ = |+⟩ ⟨−| ⊗ 𝑈 + |−⟩ ⟨+| ⊗ 𝑈† =
𝑛∏
𝑗=1

𝑅 |𝜔−
𝑗
⟩ .

Moreover, each 𝑅 |𝜔−
𝑗
⟩ can be exactly represented by 𝑂 (𝑛𝑘) generators from F𝑛.

Therefore, to represent 𝑈, we need 𝑛 · 𝑂 (𝑛𝑘) = 𝑂 (𝑛2𝑘) generators over F𝑛. □

21

Gate Complexity of the Householder Algorithm

Theorem
Let 𝑈 ∈ L𝑛 with lde√2 (𝑈) = 𝑘 . Then 𝑈 can be represented by 𝑂 (𝑛2𝑘) generators
over F𝑛 using the Householder algorithm.

Proof. We showed that 𝑈 can be simulated by 𝑈′ where

𝑈′ = |+⟩ ⟨−| ⊗ 𝑈 + |−⟩ ⟨+| ⊗ 𝑈† =
𝑛∏
𝑗=1

𝑅 |𝜔−
𝑗
⟩ .

Moreover, each 𝑅 |𝜔−
𝑗
⟩ can be exactly represented by 𝑂 (𝑛𝑘) generators from F𝑛.

Therefore, to represent 𝑈, we need 𝑛 · 𝑂 (𝑛𝑘) = 𝑂 (𝑛2𝑘) generators over F𝑛. □

21

Gate Complexity of the Householder Algorithm

• The AGR algorithm carries out matrix factorization locally - it synthesizes
one column at a time.

• When 𝑛 is fixed, both AGR and householder algorithms have the same
worst-case gate complexity – linear in 𝑘 .

• Next, we will take a global view of each matrix. This results in a smaller
gate count in practice.

𝑂 (𝑛2𝑘) =⇒ 𝑂 (𝑘)

• Define a global synthesis method for 𝑈 ∈ L8, then leverage this to find a
global synthesis method for 𝑈′ ∈ O8.

22

The Global Synthesis Algorithm

• The AGR algorithm carries out matrix factorization locally - it synthesizes
one column at a time.

• When 𝑛 is fixed, both AGR and householder algorithms have the same
worst-case gate complexity – linear in 𝑘 .

• Next, we will take a global view of each matrix. This results in a smaller
gate count in practice.

𝑂 (𝑛2𝑘) =⇒ 𝑂 (𝑘)

• Define a global synthesis method for 𝑈 ∈ L8, then leverage this to find a
global synthesis method for 𝑈′ ∈ O8.

22

The Global Synthesis Algorithm

• The AGR algorithm carries out matrix factorization locally - it synthesizes
one column at a time.

• When 𝑛 is fixed, both AGR and householder algorithms have the same
worst-case gate complexity – linear in 𝑘 .

• Next, we will take a global view of each matrix. This results in a smaller
gate count in practice.

𝑂 (𝑛2𝑘) =⇒ 𝑂 (𝑘)

• Define a global synthesis method for 𝑈 ∈ L8, then leverage this to find a
global synthesis method for 𝑈′ ∈ O8.

22

The Global Synthesis Algorithm

• The AGR algorithm carries out matrix factorization locally - it synthesizes
one column at a time.

• When 𝑛 is fixed, both AGR and householder algorithms have the same
worst-case gate complexity – linear in 𝑘 .

• Next, we will take a global view of each matrix. This results in a smaller
gate count in practice.

𝑂 (𝑛2𝑘) =⇒ 𝑂 (𝑘)

• Define a global synthesis method for 𝑈 ∈ L8, then leverage this to find a
global synthesis method for 𝑈′ ∈ O8.

22

The Global Synthesis Algorithm

• The AGR algorithm carries out matrix factorization locally - it synthesizes
one column at a time.

• When 𝑛 is fixed, both AGR and householder algorithms have the same
worst-case gate complexity – linear in 𝑘 .

• Next, we will take a global view of each matrix. This results in a smaller
gate count in practice.

𝑂 (𝑛2𝑘) =⇒ 𝑂 (𝑘)

• Define a global synthesis method for 𝑈 ∈ L8, then leverage this to find a
global synthesis method for 𝑈′ ∈ O8.

22

The Global Synthesis Algorithm

𝑈 ∈ L8. Write 𝑈 = 1√
2
𝑘𝑀 with 𝑘 minimal. There exists

−→
𝐺1, . . . ,

−→
𝐺𝑘 over F , such that

1
√
2
𝑘
𝑀

−→
𝐺1−−→ 1

√
2
𝑘−1𝑀

′
−→
𝐺2−−→ 1

√
2
𝑘−2𝑀

′′
−→
𝐺3−−→ · · ·

−→
𝐺𝑘−−→ I.

Therefore, −→
𝐺𝑘 · · · · ·

−→
𝐺1𝑈 = I =⇒ 𝑈 =

−→
𝐺1

−1 · · · · · −→𝐺𝑘−1.

23

Intuition

Binary Pattern

Let 𝑈 ∈ L𝑛. Write 𝑈 = 1√
2
𝑘𝑀 with 𝑘 minimal. The residue mod 2 of 𝑀 is called the

binary pattern of 𝑈, denoted as 𝑈.

Example: 𝑈 ∈ L5

𝑈 =
1

√
2
4


3 1 −1 1 2
1 3 1 −1 −2
−1 1 3 1 2
1 −1 1 3 −2
−2 2 −2 2 0


→ 𝑈 =


1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
0 0 0 0 0


24

Preliminaries

Weight Lemma

Let 𝑈 ∈ L𝑛 and lde√2 (𝑈) = 𝑘 ≥ 2. Let u be an arbitrary column vector in 𝑈. Then

|{𝑢𝑖; 𝑢𝑖 = 1, 1 ≤ 𝑖 ≤ 𝑛}| ≡ 0(4).

In other words, in each column of 𝑈, the 1’s occur in quadruples.

Proof. Let v be a column vector in 𝑈 and v = 1√
2
𝑘w, where w ∈ Z𝑛. Since ⟨v, v⟩ = 1,

⟨w,w⟩ = 2𝑘 and thus
∑
𝑤2
𝑖
= 2𝑘 . When 𝑘 ≥ 2,

∑
𝑤2
𝑖
≡ 0(4). Note that

𝑤2
𝑖 ≡ 1(4) ⇐⇒ 𝑤𝑖 ≡ 1(2), 𝑤2

𝑖 ≡ 0(4) ⇐⇒ 𝑤𝑖 ≡ 0(2).

Hence the number of odd entries in w is a multiple of 4. □

25

Number Theoretic Property I

Weight Lemma

Let 𝑈 ∈ L𝑛 and lde√2 (𝑈) = 𝑘 ≥ 2. Let u be an arbitrary column vector in 𝑈. Then

|{𝑢𝑖; 𝑢𝑖 = 1, 1 ≤ 𝑖 ≤ 𝑛}| ≡ 0(4).

In other words, in each column of 𝑈, the 1’s occur in quadruples.

Proof. Let v be a column vector in 𝑈 and v = 1√
2
𝑘w, where w ∈ Z𝑛. Since ⟨v, v⟩ = 1,

⟨w,w⟩ = 2𝑘 and thus
∑
𝑤2
𝑖
= 2𝑘 . When 𝑘 ≥ 2,

∑
𝑤2
𝑖
≡ 0(4). Note that

𝑤2
𝑖 ≡ 1(4) ⇐⇒ 𝑤𝑖 ≡ 1(2), 𝑤2

𝑖 ≡ 0(4) ⇐⇒ 𝑤𝑖 ≡ 0(2).

Hence the number of odd entries in w is a multiple of 4. □

25

Number Theoretic Property I

Intuition: The 1’s in any two distinct columns of 𝑈 collide evenly many times.

Collision Lemma
Let 𝑈 ∈ L𝑛 and lde√2 (𝑈) = 𝑘 > 0. Any two distinct columns in 𝑈 must have evenly
many 1’s in common.

Example: Evenly many collisions

𝑢1 =



1
1
1
1
0
0


, 𝑢2 =



0
0
1
1
1
1



Example: Oddly many collisions

𝑢3 =



1
1
1
1
0
0


, 𝑢4 =



1
1
1
0
1
0


26

Number Theoretic Property II

Intuition: The 1’s in any two distinct columns of 𝑈 collide evenly many times.

Collision Lemma
Let 𝑈 ∈ L𝑛 and lde√2 (𝑈) = 𝑘 > 0. Any two distinct columns in 𝑈 must have evenly
many 1’s in common.

Example: Evenly many collisions

𝑢1 =



1
1
1
1
0
0


, 𝑢2 =



0
0
1
1
1
1



Example: Oddly many collisions

𝑢3 =



1
1
1
1
0
0


, 𝑢4 =



1
1
1
0
1
0


26

Number Theoretic Property II

Theorem
There exists a set P of 14 binary patterns such that if 𝑈 ∈ L8 and lde(𝑈) ≥ 2, then
𝑈 ∈ P (up to row and column permutations, as well as taking transpose).

Proof. By a long case distinction using the Weight and Collision Lemmas.

27

Binary Patterns of L8

Binary patterns that are “nice”.

𝐴 =



1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1


, 𝐵 =



1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0


, . . . , 𝐾 =



1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


Binary patterns that are “not nice”.

𝐿 =



1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 1 0 0 0 0 1 1

1 0 1 0 1 0 1 0

1 0 1 0 0 1 0 1

1 0 0 1 1 0 0 1

1 0 0 1 0 1 1 0


, 𝑀 =



1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 0 0 1 0 1 1 0

0 1 1 0 1 0 0 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1


, 𝑁 =



1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 0 0 1 0 1 1 0

0 1 1 0 0 1 1 0

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0


28

Binary patterns that are “nice”.

𝐴 =



1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1


, 𝐵 =



1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0


, . . . , 𝐾 =



1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


Binary patterns that are “not nice”.

𝐿 =



1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 1 0 0 0 0 1 1

1 0 1 0 1 0 1 0

1 0 1 0 0 1 0 1

1 0 0 1 1 0 0 1

1 0 0 1 0 1 1 0


, 𝑀 =



1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 0 0 1 0 1 1 0

0 1 1 0 1 0 0 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1


, 𝑁 =



1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 0 0 1 0 1 1 0

0 1 1 0 0 1 1 0

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0


28

Binary patterns that are “nice”.

𝐴 =



1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1


, 𝐵 =



1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0


, . . . , 𝐾 =



1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


Binary patterns that are “not nice”.

𝐿 =



1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 1 0 0 0 0 1 1

1 0 1 0 1 0 1 0

1 0 1 0 0 1 0 1

1 0 0 1 1 0 0 1

1 0 0 1 0 1 1 0


, 𝑀 =



1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 0 0 1 0 1 1 0

0 1 1 0 1 0 0 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1


, 𝑁 =



1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 0 0 1 0 1 1 0

0 1 1 0 0 1 1 0

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0


28

Definition
A matrix 𝑈 ∈ Z8×82 is row-paired if identical rows occur evenly many times.

Definition
A matrix 𝑈 ∈ Z8×82 is column-paired if identical columns occur evenly many
times.

Remark: We demonstrate an example and a counterexample when 𝑛 = 4.

Example: Row-paired and column-paired

𝑈 =


0 1 0 1
1 1 1 1
0 1 0 1
1 1 1 1



Example: Only column-paired

𝑉 =


0 1 0 1
1 1 1 1
0 1 0 1
0 1 0 1


29

Definition
A matrix 𝑈 ∈ Z8×82 is row-paired if identical rows occur evenly many times.

Definition
A matrix 𝑈 ∈ Z8×82 is column-paired if identical columns occur evenly many
times.

Remark: We demonstrate an example and a counterexample when 𝑛 = 4.

Example: Row-paired and column-paired

𝑈 =


0 1 0 1
1 1 1 1
0 1 0 1
1 1 1 1



Example: Only column-paired

𝑉 =


0 1 0 1
1 1 1 1
0 1 0 1
0 1 0 1


29

Definition
A matrix 𝑈 ∈ Z8×82 is row-paired if identical rows occur evenly many times.

Definition
A matrix 𝑈 ∈ Z8×82 is column-paired if identical columns occur evenly many
times.

Remark: We demonstrate an example and a counterexample when 𝑛 = 4.

Example: Row-paired and column-paired

𝑈 =


0 1 0 1
1 1 1 1
0 1 0 1
1 1 1 1



Example: Only column-paired

𝑉 =


0 1 0 1
1 1 1 1
0 1 0 1
0 1 0 1


29

Definition
A matrix 𝑈 ∈ Z8×82 is row-paired if identical rows occur evenly many times.

Definition
A matrix 𝑈 ∈ Z8×82 is column-paired if identical columns occur evenly many
times.

Remark: We demonstrate an example and a counterexample when 𝑛 = 4.

Example: Row-paired and column-paired

𝑈 =


0 1 0 1
1 1 1 1
0 1 0 1
1 1 1 1



Example: Only column-paired

𝑉 =


0 1 0 1
1 1 1 1
0 1 0 1
0 1 0 1


29

Definition
A matrix 𝑈 ∈ Z8×82 is row-paired if identical rows occur evenly many times.

Definition
A matrix 𝑈 ∈ Z8×82 is column-paired if identical columns occur evenly many
times.

Remark: We demonstrate an example and a counterexample when 𝑛 = 4.

Example: Row-paired and column-paired

𝑈 =


0 1 0 1
1 1 1 1
0 1 0 1
1 1 1 1



Example: Only column-paired

𝑉 =


0 1 0 1
1 1 1 1
0 1 0 1
0 1 0 1


29

Theorem (Row-paired Reduction)

If 𝑈 ∈ L8 and 𝑈 is row-paired, then there exists 𝑃 ∈ 𝑆8 such that
lde√2 (((𝐼 ⊗ 𝐻) 𝑃)𝑈) < lde√2 (𝑈).

Theorem (Column-paired Reduction)

If 𝑈 ∈ L8 and 𝑈 is column-paired, then there exists 𝑃 ∈ 𝑆8 such that
lde√2 (𝑈 (𝑃 (𝐼 ⊗ 𝐻))) < lde√2 (𝑈).

Remark: Below we sketch the proof for the Row-paired Reduction using a 6 × 6
matrix as an example.

30

When the Binary Pattern is “Nice”

Proof. Consider 𝑈 ∈ L6 with lde√
2
(𝑈) = 𝑘 . Since 𝑈 is row-paired, there exists 𝑃 ∈ 𝑆6 such

that

𝑃𝑈 =
1

√
2
𝑘


𝑟1
𝑟2
...

𝑟6

 , where 𝑟1 ≡ 𝑟2 (2), 𝑟3 ≡ 𝑟4 (2), 𝑟5 ≡ 𝑟6 (2). Now

𝐻 =
1
√
2

[
1 1
1 −1

]
and 𝐼 ⊗ 𝐻 =


𝐻 0 0
0 𝐻 0
0 0 𝐻

 . Therefore,

(𝐼 ⊗ 𝐻) 𝑃𝑈 =
1

√
2
𝑘+1



𝑟1 + 𝑟2
𝑟1 − 𝑟2
𝑟3 + 𝑟4
𝑟3 − 𝑟4
𝑟5 + 𝑟6
𝑟5 − 𝑟6


=

2
√
2
𝑘+1


𝑟′1
...

𝑟′6

 =
1

√
2
𝑘−1


𝑟′1
...

𝑟′6

 , where 𝑟′1, . . . , 𝑟
′
6 ∈ Z1×6.

Hence lde√
2
(((𝐼 ⊗ 𝐻) 𝑃)𝑈) < lde√

2
(𝑈), for some 𝑃 ∈ 𝑆6.

31

Theorem
Consider 𝑈 ∈ L8 and 𝑈 is neither row-paired nor column-paired. Let
𝑈′ = (𝐼 ⊗ 𝐻)𝑈 (𝐼 ⊗ 𝐻). Then 𝑈′ is row-paired and lde√2 (𝑈′) ≤ lde√2 (𝑈).

Proof. By direct computation.

32

When the Binary Pattern is “NOT Nice”

Theorem
Let 𝑈 ∈ L8 and lde√2 (𝑈) = 𝑘 . Then there exists 𝐶 over F such that [[𝐶]] = 𝑈 and
the length of 𝐶 is 𝑂 (𝑘).

Proof. Let 𝑈 ∈ L8, proceed by induction on 𝑘 .

• 𝑘 ≤ 1, there exists 𝐶 composed of (−1)[𝛼] , 𝑋[𝛼,𝛽] and 𝐼 ⊗ 𝐻 such that [[𝐶]] = 𝑈
and the length of 𝐶 is 𝑂 (1).

• 𝑘 ≥ 2, 𝑈 must be one of the 14 binary patterns.

∗ If 𝑈 is nice, then lde((𝐼 ⊗ 𝐻) 𝑃𝑈) ≤ 𝑘 − 1 and proceed recursively with (𝐼 ⊗ 𝐻) 𝑃𝑈.

∗ If𝑈 is not nice, then (𝐼 ⊗ 𝐻)𝑈 (𝐼 ⊗ 𝐻) is nice so lde ((𝐼 ⊗ 𝐻) 𝑃 (𝐼 ⊗ 𝐻)𝑈 (𝐼 ⊗ 𝐻)) ≤ 𝑘 −1
and proceed recursively with (𝐼 ⊗ 𝐻) 𝑃 (𝐼 ⊗ 𝐻)𝑈 (𝐼 ⊗ 𝐻).

33

Global Synthesis for L8

• L8 is generated by F =
{
(−1)[𝛼] , 𝑋[𝛼,𝛽] , 𝐾[𝛼,𝛽,𝛾, 𝛿] , 𝐼 ⊗ 𝐻 : 1 ≤ 𝛼 < 𝛽 < 𝛾 < 𝛿 ≤ 8

}
.

• O8 is generated by G =
{
(−1)[𝛼] , 𝑋[𝛼,𝛽] , 𝐾[𝛼,𝛽,𝛾, 𝛿] : 1 ≤ 𝛼 < 𝛽 < 𝛾 < 𝛿 ≤ 8

}
.

(𝐼 ⊗ 𝐻) (𝐼 ⊗ 𝐻) = 𝜖 (1)
(𝐼 ⊗ 𝐻) (−1)[1] = (−1)[1]𝑋[1,2] (−1)[1] (𝐼 ⊗ 𝐻) (2)
(𝐼 ⊗ 𝐻)𝑋[𝑎,𝑎+1] = (−1)𝑎+1[𝑎+1]𝑋

𝑎
[𝑎,𝑎+1]𝐾

𝑎
[𝑎−1,𝑎,𝑎+1,𝑎+2] (𝐼 ⊗ 𝐻) (3)

(𝐼 ⊗ 𝐻)𝐾[1,2,3,4] = 𝐾[1,2,3,4] (𝐼 ⊗ 𝐻) (4)

Intuition: Commuting 𝐼 ⊗ 𝐻 with an element in G adds 𝑂 (1) gates.

3Sarah Meng Li, Neil J Ross, and Peter Selinger (2021). “Generators and relations for the group
𝑂𝑛 (Z[1/2])”. In: arXiv preprint arXiv:2106.01175.

34

Generator Relations for L8 and O8
3

Lemma
For any 𝑀 over G, there exists 𝑀 ′ over G such that (𝐼 ⊗ 𝐻) 𝑀 = 𝑀 ′ (𝐼 ⊗ 𝐻).
Moreover, if 𝑀 has length 𝑂 (𝑚), then 𝑀 ′ has length 𝑂 (𝑚).

Example:

(𝐼 ⊗ 𝐻)𝐾[1,2,3,4] (−1)[1]𝑋[1,2] (𝐼 ⊗ 𝐻) = 𝐾[1,2,3,4] (𝐼 ⊗ 𝐻) (−1)[1]𝑋[1,2] (𝐼 ⊗ 𝐻)
= 𝐾[1,2,3,4] (−1)[1]𝑋[1,2] (−1)[1] (𝐼 ⊗ 𝐻)𝑋[1,2] (𝐼 ⊗ 𝐻)
= 𝐾[1,2,3,4] (−1)[1]𝑋[1,2] (−1)[1] (−1)[2] (𝐼 ⊗ 𝐻) (𝐼 ⊗ 𝐻)
= 𝐾[1,2,3,4] (−1)[1]𝑋[1,2] (−1)[1] (−1)[2] .

35

Relations for L8

Theorem
Let 𝑈 ∈ O8 and lde(𝑈) = 𝑘 ≥ 1. Then there exists 𝐶 over G such that [[𝐶]] = 𝑈 and
the length of 𝐶 is 𝑂 (𝑘).

Proof. Let 𝑈 ∈ O8 and lde(𝑈) = 𝑘 . Then 𝑈 ∈ L8 with lde√
2
(𝑈) = 2𝑘 . Using the global

synthesis for L8, we can express 𝑈 as a word 𝑊 over F with evenly many occurrences of
𝐼 ⊗ 𝐻, and the length of 𝑊 is 𝑂 (𝑘). Consider any subword 𝑊𝑖 of the form

(𝐼 ⊗ 𝐻) 𝐶 (𝐼 ⊗ 𝐻) ,

where 𝐶 does not contain 𝐼 ⊗ 𝐻.

36

Global Synthesis for O8

Theorem
Consider 𝑈 ∈ O8 and lde(𝑈) = 𝑘 ≥ 1. Then there exists 𝐶 over G such that [[𝐶]] = 𝑈
and the length of 𝐶 is 𝑂 (𝑘).

Proof Continued. Suppose the length of 𝑊𝑖 is 𝑂 (𝑘). Then

𝑊𝑖 = (𝐼 ⊗ 𝐻) 𝐶 (𝐼 ⊗ 𝐻) −→ 𝐶′ (𝐼 ⊗ 𝐻) (𝐼 ⊗ 𝐻) −→ 𝐶′

𝑊𝑖 can be rewritten as a word 𝐶′ over G of length at most 3 ∗𝑂 (𝑘) generators. Hence we
can rewrite 𝑊 as a word 𝑊 ′ over G of length no more than 3 ∗𝑂 (𝑘).

37

Global Synthesis for O8

• Benchmark our global synthesis algorithm with other state-of-the-art
algorithms to compare their performance in practice.

• Design a standalone global synthesis for O8, rather than relying on the
corresponding result for L8 and the commutation of generators.

• Extend the global synthesis to arbitrary dimensions: O𝑛 and L𝑛.

• Present the global synthesis results of O𝑛 and L𝑛 in terms of the restricted
Clifford+T circuits over {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐾} and {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐻} respectively.

38

Future Work

• Benchmark our global synthesis algorithm with other state-of-the-art
algorithms to compare their performance in practice.

• Design a standalone global synthesis for O8, rather than relying on the
corresponding result for L8 and the commutation of generators.

• Extend the global synthesis to arbitrary dimensions: O𝑛 and L𝑛.

• Present the global synthesis results of O𝑛 and L𝑛 in terms of the restricted
Clifford+T circuits over {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐾} and {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐻} respectively.

38

Future Work

• Benchmark our global synthesis algorithm with other state-of-the-art
algorithms to compare their performance in practice.

• Design a standalone global synthesis for O8, rather than relying on the
corresponding result for L8 and the commutation of generators.

• Extend the global synthesis to arbitrary dimensions: O𝑛 and L𝑛.

• Present the global synthesis results of O𝑛 and L𝑛 in terms of the restricted
Clifford+T circuits over {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐾} and {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐻} respectively.

38

Future Work

• Benchmark our global synthesis algorithm with other state-of-the-art
algorithms to compare their performance in practice.

• Design a standalone global synthesis for O8, rather than relying on the
corresponding result for L8 and the commutation of generators.

• Extend the global synthesis to arbitrary dimensions: O𝑛 and L𝑛.

• Present the global synthesis results of O𝑛 and L𝑛 in terms of the restricted
Clifford+T circuits over {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐾} and {𝑋,𝐶𝑋,𝐶𝐶𝑋, 𝐻} respectively.

38

Future Work

Thank you!

