Improved Synthesis of Toffoli-Hadamard Circuits

Matthew Amy ${ }^{1}$, Andrew N. Glaudell ${ }^{2}$, Sarah Meng Li ${ }^{3}$, Neil J. Ross ${ }^{2}$
${ }^{1}$ School of Computing Science, Simon Fraser University
${ }^{2}$ Photonic Inc.
${ }^{3}$ Institute for Quantum Computing, University of Waterloo
${ }^{4}$ Department of Mathematics and Statistics, Dalhousie University

Background

Quantum Algorithm: Carrying out a well-defined task.

Background

Quantum Algorithm: Carrying out a well-defined task.

Quantum Compilation: Program \Rightarrow Sequence of elementary quantum gates.

Background

Quantum Algorithm: Carrying out a well-defined task.

Quantum Compilation: Program \Rightarrow Sequence of elementary quantum gates.

Implementation: Mapping unitary operations to physical architectures.

Restricted Clifford+T Circuits ${ }^{ }$

Toffoli-Hadamard circuits are quantum circuits over the gate set

$$
\{X, C X, C C X, H\} .
$$

[^0]
Restricted Clifford+T Circuits

A Toffoli-Hadamard Circuit

A Toffoli-K Circuit

Basic Gates

$$
\begin{gathered}
(-1)=[-1] \\
H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right], \quad K=H \otimes H=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right] \\
X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad C X=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]=\left[\begin{array}{c|c}
I_{2} & \mathbf{0} \\
\hline \mathbf{0} & X
\end{array}\right], \quad C C X=\left[\begin{array}{c|c}
I_{6} & \mathbf{0} \\
\hline \mathbf{0} & X
\end{array}\right]
\end{gathered}
$$

The Circuit-Matrix Correspondence

- A family of quantum circuits corresponds to a group of matrices.
- Studying matrix groups is a way to study quantum circuits.

Orthogonal Scaled Dyadic Matrices

- \mathcal{L}_{n} is the group of orthogonal scaled dyadic matrices, which consists of $n \times n$ orthogonal matrices of the form $M / \sqrt{2}^{k}$, where M is an integer matrix and k is a nonnegative integer.

Orthogonal Scaled Dyadic Matrices

- \mathcal{L}_{n} is the group of orthogonal scaled dyadic matrices, which consists of $n \times n$ orthogonal matrices of the form $M / \sqrt{2}^{k}$, where M is an integer matrix and k is a nonnegative integer.
- Example: $V \in \mathcal{L}_{4}$

$$
V=\frac{1}{\sqrt{2}}\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & -1 & 0 & -1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right]
$$

Orthogonal Dyadic Matrices

- $\mathbb{Z}\left[\frac{1}{2}\right]=\left\{\left.\frac{u}{2 q} \right\rvert\, u \in \mathbb{Z}, q \in \mathbb{N}\right\}$ is the ring of dyadic fractions.

Orthogonal Dyadic Matrices

- $\mathbb{Z}\left[\frac{1}{2}\right]=\left\{\left.\frac{u}{2^{q}} \right\rvert\, u \in \mathbb{Z}, q \in \mathbb{N}\right\}$ is the ring of dyadic fractions.
- $\mathrm{O}_{n}\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)$ is the group of orthogonal dyadic matrices, which consists of $n \times n$ orthogonal matrices of the form $M / 2^{k}$, where M is an integer matrix and k is a nonnegative integer. For short, we denote it as O_{n}.

Orthogonal Dyadic Matrices

- $\mathbb{Z}\left[\frac{1}{2}\right]=\left\{\left.\frac{u}{2 q} \right\rvert\, u \in \mathbb{Z}, q \in \mathbb{N}\right\}$ is the ring of dyadic fractions.
- $\mathrm{O}_{n}\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)$ is the group of orthogonal dyadic matrices, which consists of $n \times n$ orthogonal matrices of the form $M / 2^{k}$, where M is an integer matrix and k is a nonnegative integer. For short, we denote it as O_{n}.
- Example: $U \in O_{5}$

$$
U=\left[\begin{array}{rrrrr}
3 / 4 & 1 / 4 & -1 / 4 & 1 / 4 & 1 / 2 \\
1 / 4 & 3 / 4 & 1 / 4 & -1 / 4 & -1 / 2 \\
-1 / 4 & 1 / 4 & 3 / 4 & 1 / 4 & 1 / 2 \\
1 / 4 & -1 / 4 & 1 / 4 & 3 / 4 & -1 / 2 \\
-1 / 2 & 1 / 2 & -1 / 2 & 1 / 2 & 0
\end{array}\right]
$$

Orthogonal Dyadic Matrices

- $\mathbb{Z}\left[\frac{1}{2}\right]=\left\{\left.\frac{u}{2 q} \right\rvert\, u \in \mathbb{Z}, q \in \mathbb{N}\right\}$ is the ring of dyadic fractions.
- $\mathrm{O}_{n}\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)$ is the group of orthogonal dyadic matrices, which consists of $n \times n$ orthogonal matrices of the form $M / 2^{k}$, where M is an integer matrix and k is a nonnegative integer. For short, we denote it as O_{n}.
- Example: $U \in O_{5}$

$$
U=\left[\begin{array}{rrrrr}
3 / 4 & 1 / 4 & -1 / 4 & 1 / 4 & 1 / 2 \\
1 / 4 & 3 / 4 & 1 / 4 & -1 / 4 & -1 / 2 \\
-1 / 4 & 1 / 4 & 3 / 4 & 1 / 4 & 1 / 2 \\
1 / 4 & -1 / 4 & 1 / 4 & 3 / 4 & -1 / 2 \\
-1 / 2 & 1 / 2 & -1 / 2 & 1 / 2 & 0
\end{array}\right]
$$

Orthogonal Dyadic Matrices

- $\mathbb{Z}\left[\frac{1}{2}\right]=\left\{\left.\frac{u}{2 q} \right\rvert\, u \in \mathbb{Z}, q \in \mathbb{N}\right\}$ is the ring of dyadic fractions.
- $\mathrm{O}_{n}\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)$ is the group of orthogonal dyadic matrices, which consists of $n \times n$ orthogonal matrices of the form $M / 2^{k}$, where M is an integer matrix and k is a nonnegative integer. For short, we denote it as O_{n}.
- Example: $U \in O_{5}$

$$
U=\frac{1}{2^{2}}\left[\begin{array}{rrrrr}
3 & 1 & -1 & 1 & 2 \\
1 & 3 & 1 & -1 & -2 \\
-1 & 1 & 3 & 1 & 2 \\
1 & -1 & 1 & 3 & -2 \\
-2 & 2 & -2 & 2 & 0
\end{array}\right]
$$

Orthogonal (Scaled) Dyadic Matrices

- \mathcal{L}_{n} is the group of orthogonal scaled dyadic matrices, which consists of $n \times n$ orthogonal matrices of the form $M / \sqrt{2}^{k}$, where M is an integer matrix and k is a nonnegative integer.
- O_{n} is the group of orthogonal dyadic matrices, which consists of $n \times n$ orthogonal matrices of the form $M / 2^{k}$, where M is an integer matrix and k is a nonnegative integer.
- $O_{n} \subset \mathcal{L}_{n}$.

Example: $V \in \mathcal{L}_{4}$

$$
V=\frac{1}{\sqrt{2}}\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & -1 & 0 & -1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right]
$$

Example: $U \in O_{4}$

$$
U=\frac{1}{2}\left[\begin{array}{cccc}
1 & -1 & -1 & -1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1 \\
1 & -1 & 1 & 1
\end{array}\right]
$$

Orthogonal (Scaled) Dyadic Matrices

- \mathcal{L}_{n} is the group of orthogonal scaled dyadic matrices, which consists of $n \times n$ orthogonal matrices of the form $M / \sqrt{2}^{k}$, where M is an integer matrix and k is a nonnegative integer.
- O_{n} is the group of orthogonal dyadic matrices, which consists of $n \times n$ orthogonal matrices of the form $M / 2^{k}$, where M is an integer matrix and k is a nonnegative integer.
- $O_{n} \subset \mathcal{L}_{n}$.

Example: $V \in \mathcal{L}_{4}$

$$
V=\frac{1}{\sqrt{2}}\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & -1 & 0 & -1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right]
$$

Example: $U \in O_{4}$

$$
U=\frac{1}{\sqrt{2}^{2}}\left[\begin{array}{cccc}
1 & -1 & -1 & -1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1 \\
1 & -1 & 1 & 1
\end{array}\right]
$$

Constructive Membership Problem (CMP)

Let \mathcal{G} be a group and let \mathcal{S} be a set of generators for \mathcal{G}. The constructive membership problem for \mathcal{G} and \mathcal{S}, denoted $\mathcal{P}(\mathcal{G}, \mathcal{S})$, is the following:

Given $g \in \mathcal{G}$, find a sequence of generators $s_{1}, \ldots, s_{\ell} \in \mathcal{S}$ such that

$$
s_{1} \cdot \ldots \cdot s_{\ell}=g
$$

where • is the group operation.

- The smaller the ℓ, the better the solution.

Constructive Membership Problem (CMP)

Let \mathcal{G} be a group and let \mathcal{S} be a set of generators for \mathcal{G}. The constructive membership problem for \mathcal{G} and \mathcal{S}, denoted $\mathcal{P}(\mathcal{G}, \mathcal{S})$, is the following:

Given $g \in \mathcal{G}$, find a sequence of generators $s_{1}, \ldots, s_{\ell} \in \mathcal{S}$ such that

$$
s_{1} \cdot \ldots \cdot s_{\ell}=g
$$

where • is the group operation.

- The smaller the ℓ, the better the solution.
- A solution is optimal if the sequence is a shortest possible sequence.

Constructive Membership Problem (CMP)

Let \mathcal{G} be a group and let \mathcal{S} be a set of generators for \mathcal{G}. The constructive membership problem for \mathcal{G} and \mathcal{S}, denoted $\mathcal{P}(\mathcal{G}, \mathcal{S})$, is the following:

Given $g \in \mathcal{G}$, find a sequence of generators $s_{1}, \ldots, s_{\ell} \in \mathcal{S}$ such that

$$
s_{1} \cdot \ldots \cdot s_{\ell}=g
$$

where • is the group operation.

- The smaller the ℓ, the better the solution.
- A solution is optimal if the sequence is a shortest possible sequence.
- An algorithm to solve the CMP is called an exact synthesis algorithm.

The Circuit-Matrix Correspondence I

Theorem (Solutions to CMP: The AGR Algorithm')

For an n-dimensional orthogonal matrix U,

- it can be exactly represented by a circuit over $\{X, C X, C C X, H\}$ iff $U \in \mathcal{L}_{n}$.
- it can be exactly represented by a circuit over $\{X, C X, C C X, K\}$ iff $U \in O_{n}$.

The gate complexity of the AGR algorithm in both cases is $O\left(2^{n} \log (n) k\right)$.

- A good solution to CMP yields shorter quantum circuits.

[^1]
The Circuit-Matrix Correspondence I

Theorem (Solutions to CMP: The AGR Algorithm')

For an n-dimensional orthogonal matrix U,

- it can be exactly represented by a circuit over $\{X, C X, C C X, H\}$ iff $U \in \mathcal{L}_{n}$.
- it can be exactly represented by a circuit over $\{X, C X, C C X, K\}$ iff $U \in O_{n}$.

The gate complexity of the AGR algorithm in both cases is $O\left(2^{n} \log (n) k\right)$.

- A good solution to CMP yields shorter quantum circuits.
- Can we find a good solution to the CMP for O_{n} and \mathcal{L}_{n} ?

[^2]
Two-level Operator: $U_{[\alpha, \beta]}$

Definition

Let $U=\left[\begin{array}{ll}x_{1,1} & x_{1,2} \\ x_{2,1} & x_{2,2}\end{array}\right]$. The action of $U_{[\alpha, \beta]}, 1 \leq \alpha<\beta \leq n$, is defined as

$$
U_{[\alpha, \beta]^{v}}=w, \text { where }\left\{\begin{array}{l}
{\left[\begin{array}{l}
w_{\alpha} \\
w_{\beta}
\end{array}\right]=U\left[\begin{array}{l}
v_{\alpha} \\
v_{\beta}
\end{array}\right],} \\
w_{i}=v_{i}, i \notin\{\alpha, \beta\} .
\end{array}\right.
$$

Example:

$$
\text { Let } X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \text {. Then } X_{[2,3]}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text { and } X_{[2,3]}\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
v_{1} \\
v_{3} \\
v_{2} \\
v_{4}
\end{array}\right] \text {. }
$$

Four-level Operator: $U_{[\alpha, \beta, \gamma, \delta]}$

Similarly, we can create a four-level operator by embedding a 4×4 matrix \mathbf{U} into an $n \times n$ identity matrix.

$$
\begin{aligned}
& \text { Let } K=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right] \text {. Then } K_{[1,2,4,6]}=\left[\begin{array}{cccccc}
1 / 2 & 1 / 2 & 0 & 1 / 2 & 0 & 1 / 2 \\
1 / 2 & -1 / 2 & 0 & 1 / 2 & 0 & -1 / 2 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 / 2 & 1 / 2 & 0 & -1 / 2 & 0 & -1 / 2 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 / 2 & -1 / 2 & 0 & -1 / 2 & 0 & 1 / 2
\end{array}\right] \text {. } \\
& K_{[1,2,4,6]}\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5} \\
v_{6}
\end{array}\right]=\left[\begin{array}{c}
\left(v_{1}+v_{2}+v_{4}+v_{6}\right) / 2 \\
\left(v_{1}-v_{2}+v_{4}-v_{6}\right) / 2 \\
v_{3} \\
\left(v_{1}+v_{2}-v_{4}-v_{6}\right) / 2 \\
v_{5} \\
\left(v_{1}-v_{2}-v_{4}+v_{6}\right) / 2
\end{array}\right] .
\end{aligned}
$$

The Circuit-Matrix Correspondence II

$$
\begin{aligned}
& \mathcal{F}_{n}=\left\{(-1)_{[\alpha]}, X_{[\alpha, \beta]}, K_{[\alpha, \beta, \gamma, \delta]}, I_{n / 2} \otimes H: 1 \leq \alpha<\beta<\gamma<\delta \leq n\right\} . \\
& \mathcal{G}_{n}=\left\{(-1)_{[\alpha]}, X_{[\alpha, \beta]}, K_{[\alpha, \beta, \gamma, \delta]}: 1 \leq \alpha<\beta<\gamma<\delta \leq n\right\} .
\end{aligned}
$$

Theorem (Solutions to CMP: The AGR Algorithm')

Let U be an $n \times n$ matrix.

- $U \in \mathcal{L}_{n}$ iff U can be written as a product of elements of \mathscr{F}_{n}.
- $U \in O_{n}$ iff U can be written as a product of elements of \mathcal{G}_{n}.
- When $n=2^{m}$, every operator in \mathcal{G}_{n} and \mathcal{F}_{n} can be exactly represented by $O(\log (n))$ operators in $\{X, C X, C C X, K\}$ and $\{X, C X, C C X, H\}$, respectively.

[^3]
The Least Denominator Exponent (LDE)

Let $t \in \mathbb{Z}\left[\frac{1}{2}\right] . t=\frac{a}{2^{k}}$, where $a \in \mathbb{Z}$ and $k \in \mathbb{N}$. k is a denominator exponent for t. The minimal such k is called the least denominator exponent of t, written lde (t).

Example: LDE of a column vector
Example: LDE of a matrix

$$
\begin{gathered}
v=\frac{1}{2^{7}}\left[\begin{array}{c}
54 \\
62 \\
98 \\
2 \\
2 \\
2 \\
2 \\
2
\end{array}\right]=\frac{2}{2^{7}}\left[\begin{array}{c}
27 \\
31 \\
49 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]=\frac{1}{2^{6}}\left[\begin{array}{c}
27 \\
31 \\
49 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right] \\
\operatorname{lde}(v)=6
\end{gathered}
$$

$$
U=\frac{1}{2}\left[\begin{array}{cccccccc}
-1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
-1 & -1 & 0 & 1 & 0 & 1 & 0 & 0 \\
-1 & 1 & -1 & 0 & -1 & 0 & 0 & 0 \\
-1 & -1 & 0 & -1 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 & -1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2
\end{array}\right]
$$

The Least Denominator Exponent (LDE)

Let $t \in \mathbb{Z}\left[\frac{1}{2}\right] . t=\frac{a}{2^{k}}$, where $a \in \mathbb{Z}$ and $k \in \mathbb{N}$. k is a denominator exponent for t. The minimal such k is called the least denominator exponent of t, written lde (t).

Example: LDE of a column vector
Example: LDE of a matrix

$$
\begin{gathered}
v=\frac{1}{2^{7}}\left[\begin{array}{c}
54 \\
62 \\
98 \\
2 \\
2 \\
2 \\
2 \\
2
\end{array}\right]=\frac{2}{2^{7}}\left[\begin{array}{c}
27 \\
31 \\
49 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]=\frac{1}{2^{6}}\left[\begin{array}{c}
27 \\
31 \\
49 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right] \\
\operatorname{lde}(v)=6
\end{gathered}
$$

$$
U=\frac{1}{2}\left[\begin{array}{cccccccc}
-1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
-1 & -1 & 0 & 1 & 0 & 1 & 0 & 0 \\
-1 & 1 & -1 & 0 & -1 & 0 & 0 & 0 \\
-1 & -1 & 0 & -1 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 & -1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2
\end{array}\right]
$$

The Least Denominator Exponent (LDE)

Let $t \in \mathbb{Z}\left[\frac{1}{2}\right] . t=\frac{a}{2^{k}}$, where $a \in \mathbb{Z}$ and $k \in \mathbb{N}$. k is a denominator exponent for t. The minimal such k is called the least denominator exponent of t, written lde (t).

Example: LDE of a column vector
Example: LDE of a matrix

$$
\begin{gathered}
v=\frac{1}{2^{7}}\left[\begin{array}{c}
54 \\
62 \\
98 \\
2 \\
2 \\
2 \\
2 \\
2
\end{array}\right]=\frac{2}{2^{7}}\left[\begin{array}{c}
27 \\
31 \\
49 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]=\frac{1}{2^{6}}\left[\begin{array}{c}
27 \\
31 \\
49 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right] \\
\operatorname{lde}(v)=6
\end{gathered}
$$

$$
U=\frac{1}{2}\left[\begin{array}{cccccccc}
-1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
-1 & -1 & 0 & 1 & 0 & 1 & 0 & 0 \\
-1 & 1 & -1 & 0 & -1 & 0 & 0 & 0 \\
-1 & -1 & 0 & -1 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 & -1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2
\end{array}\right]
$$

Lemma (Base Case)

Let $v \in \mathbb{Z}\left[\frac{1}{2}\right]^{n}$ be a unit vector. Let $k=\operatorname{lde}(v)$. If $k=0$, then $v= \pm e_{j}$ for some $j \in\{1, \ldots, n\}$.

Lemma (Count)

Let $v \in \mathbb{Z}\left[\frac{1}{2}\right]^{n}$ be a unit vector, and $\operatorname{lde}(v)=k>0$. Let $w=2^{k} v$. Then the number of odd entries in w is a multiple of 4 .

Lemma (Parity Reduction)

Let $u_{1}, u_{2}, u_{3}, u_{4}$ be odd integers. Then there exist $\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4} \in \mathbb{Z}_{2}$ such that

$$
K_{[1,2,3,4]}(-1)_{[1]}^{\tau_{1}}(-1)_{[2]}^{\tau_{2}}(-1)_{[3]}^{\tau_{3}}(-1)_{[4]}^{\tau_{4}}\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right]=\left[\begin{array}{l}
u_{1}^{\prime} \\
u_{2}^{\prime} \\
u_{3}^{\prime} \\
u_{4}^{\prime}
\end{array}\right], u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, u_{4}^{\prime} \text { are even integers. }
$$

The AGR Algorithm (I)

Example: Input: $v \in \mathbb{Z}\left[\frac{1}{2}\right]^{8} \quad$ Output: $G_{1}, G_{2}, G_{3} \quad$ Result: $G_{3} \cdot G_{2} \cdot G_{1} \cdot v=e_{1}$

The AGR Algorithm (II)

- The algorithm proceeds one column at a time, reducing each column to a corresponding basis vector.
- While outputting a word $\overrightarrow{G_{\ell}}$ after each iteration, the algorithm recursively acts on the input matrix until it is reduced to the identity matrix I.

$$
\overrightarrow{G_{\ell}} \cdots \cdot \overrightarrow{G_{1}} M=\mathbb{I} \Rightarrow M={\overrightarrow{G_{1}}}^{-1} \cdots \cdot \overrightarrow{G_{\ell}}-1
$$

The AGR Algorithm (II)

- The algorithm proceeds one column at a time, reducing each column to a corresponding basis vector.
- While outputting a word $\overrightarrow{G_{\ell}}$ after each iteration, the algorithm recursively acts on the input matrix until it is reduced to the identity matrix I.

The AGR Algorithm (II)

- The algorithm proceeds one column at a time, reducing each column to a corresponding basis vector.
- While outputting a word $\overrightarrow{G_{\ell}}$ after each iteration, the algorithm recursively acts on the input matrix until it is reduced to the identity matrix I.

Gate Complexity of the AGR Algorithm

Lemma

Let $\mathbf{u} \in \mathbb{Z}\left[\frac{1}{2}\right]^{n}$ with lde $(\mathbf{u})=k$. The number of generators in \mathcal{G}_{n} to reduce \mathbf{u} to \mathbf{e}_{j} is $O(n k)$.

Theorem

Let $U \in O_{n}$ with $\operatorname{lde}(U)=k . U$ can be exactly represented by $O\left(2^{n} k\right)$ generators over \mathcal{G}_{n}.

Proof. Let $f_{\mathbf{u}_{i}}$ be the cost of reducing \mathbf{u}_{i} to \mathbf{e}_{i}.

- Each row operation may increase the Ide of any column in U by 1 .
- During reduction, the Ide of any other column may increase up to $2 k$.

$$
\begin{gathered}
f_{\mathbf{u}_{1}}=O(n k), \quad f_{\mathbf{u}_{2}}=O((n-1) 2 k), \quad f_{\mathbf{u}_{3}}=O\left((n-2) 2^{2} k\right), \quad \ldots, \quad f_{\mathbf{u}_{n}}=O\left(2^{n-1} k\right) . \\
S_{n}=\sum_{i=1}^{n} f_{\mathbf{u}_{i}}=\sum_{i=1}^{n}(n-i+1) 2^{i-1} k=O\left(2^{n} k\right) .
\end{gathered}
$$

The Householder Algorithm²

With ancillary qubits, the gate complexity of the exact synthesis for \mathcal{L}_{n} over \mathcal{F}_{n} is reduced from $O\left(2^{n} k\right)$ to $O\left(n^{2} k\right)$.

[^4]
The Householder Algorithm²

With ancillary qubits, the gate complexity of the exact synthesis for \mathcal{L}_{n} over \mathcal{F}_{n} is reduced from $O\left(2^{n} k\right)$ to $O\left(n^{2} k\right)$.

Definition

For an n-dimensional unit vector $|\psi\rangle$, the reflection operator around $|\psi\rangle$ is

$$
R_{|\psi\rangle}=I-2|\psi\rangle\langle\psi| .
$$

[^5]
The Householder Algorithm²

With ancillary qubits, the gate complexity of the exact synthesis for \mathcal{L}_{n} over \mathcal{F}_{n} is reduced from $O\left(2^{n} k\right)$ to $O\left(n^{2} k\right)$.

Definition

For an n-dimensional unit vector $|\psi\rangle$, the reflection operator around $|\psi\rangle$ is

$$
R_{|\psi\rangle}=I-2|\psi\rangle\langle\psi| .
$$

Proposition: Gate Complexity of the Reflection Operator

Let $|\psi\rangle=\mathbf{v} / \sqrt{2}^{k}$ be an n-dimensional unit vector with lde $\left.\sqrt{2}^{2}|\psi\rangle\right)=k$, \mathbf{v} is an integer vector. The reflection operator $R_{|\psi\rangle}$ can be exactly represented by $O(n k)$ generators over \mathcal{F}_{n}.

[^6]
Unitary Simulation

Let $U \in \mathcal{L}_{n}$. Then U can be simulated using the unitary

$$
U^{\prime}=|+\rangle\langle-| \otimes U+|-\rangle\langle+| \otimes U^{\dagger}
$$

Moreover, $U^{\prime} \in \mathcal{L}_{2 n}$ and U^{\prime} can be factored as a product $U^{\prime}=\prod_{j=1}^{n} R_{\left|\omega_{j}^{-}\right\rangle}$of reflection operators around vectors

$$
\left|\omega_{j}^{-}\right\rangle=\frac{\left(|-\rangle|j\rangle-|+\rangle\left|\mathbf{u}_{j}\right\rangle\right)}{\sqrt{2}}
$$

\mathbf{u}_{j} is the j-th column vector in U and $|j\rangle$ is the j-th computational basis vector.

Unitary Simulation

Let $U \in \mathcal{L}_{n}$. Then U can be simulated using the unitary

$$
U^{\prime}=|+\rangle\langle-| \otimes U+|-\rangle\langle+| \otimes U^{\dagger}
$$

Moreover, $U^{\prime} \in \mathcal{L}_{2 n}$ and U^{\prime} can be factored as a product $U^{\prime}=\prod_{j=1}^{n} R_{\left|\omega_{j}^{-}\right\rangle}$of reflection operators around vectors

$$
\left|\omega_{j}^{-}\right\rangle=\frac{\left(|-\rangle|j\rangle-|+\rangle\left|\mathbf{u}_{j}\right\rangle\right)}{\sqrt{2}}
$$

\mathbf{u}_{j} is the j-th column vector in U and $|j\rangle$ is the j-th computational basis vector.

Unitary Simulation

Let $U \in \mathcal{L}_{n}$. Then U can be simulated using the unitary

$$
U^{\prime}=|+\rangle\langle-| \otimes U+|-\rangle\langle+| \otimes U^{\dagger}
$$

Moreover, $U^{\prime} \in \mathcal{L}_{2 n}$ and U^{\prime} can be factored as a product $U^{\prime}=\prod_{j=1}^{n} R_{\left|\omega_{j}^{-}\right\rangle}$of reflection operators around vectors

$$
\left|\omega_{j}^{-}\right\rangle=\frac{\left(|-\rangle|j\rangle-|+\rangle\left|\mathbf{u}_{j}\right\rangle\right)}{\sqrt{2}}
$$

\mathbf{u}_{j} is the j-th column vector in U and $|j\rangle$ is the j-th computational basis vector.

- $I=\sum_{j=1}^{n}\left(\left|\omega_{j}^{+}\right\rangle\left\langle\omega_{j}^{+}\right|+\left|\omega_{j}^{-}\right\rangle\left\langle\omega_{j}^{-}\right|\right)$The completeness relation.

Unitary Simulation

Let $U \in \mathcal{L}_{n}$. Then U can be simulated using the unitary

$$
U^{\prime}=|+\rangle\langle-| \otimes U+|-\rangle\langle+| \otimes U^{\dagger}
$$

Moreover, $U^{\prime} \in \mathcal{L}_{2 n}$ and U^{\prime} can be factored as a product $U^{\prime}=\prod_{j=1}^{n} R_{\left|\omega_{j}^{-}\right\rangle}$of reflection operators around vectors

$$
\left|\omega_{j}^{-}\right\rangle=\frac{\left(|-\rangle|j\rangle-|+\rangle\left|\mathbf{u}_{j}\right\rangle\right)}{\sqrt{2}}
$$

\mathbf{u}_{j} is the j-th column vector in U and $|j\rangle$ is the j-th computational basis vector.

- $I=\sum_{j=1}^{n}\left(\left|\omega_{j}^{+}\right\rangle\left\langle\omega_{j}^{+}\right|+\left|\omega_{j}^{-}\right\rangle\left\langle\omega_{j}^{-}\right|\right)$The completeness relation.
- $U^{\prime}=\sum_{j=1}^{n}\left(\left|\omega_{j}^{+}\right\rangle\left\langle\omega_{j}^{+}\right|-\left|\omega_{j}^{-}\right\rangle\left\langle\omega_{j}^{-}\right|\right)$The spectral theorem.

Unitary Simulation

Let $U \in \mathcal{L}_{n}$. Then U can be simulated using the unitary

$$
U^{\prime}=|+\rangle\langle-| \otimes U+|-\rangle\langle+| \otimes U^{\dagger}
$$

Moreover, $U^{\prime} \in \mathcal{L}_{2 n}$ and U^{\prime} can be factored as a product $U^{\prime}=\prod_{j=1}^{n} R_{\left|\omega_{j}^{-}\right\rangle}$of reflection operators around vectors

$$
\left|\omega_{j}^{-}\right\rangle=\frac{\left(|-\rangle|j\rangle-|+\rangle\left|\mathbf{u}_{j}\right\rangle\right)}{\sqrt{2}}
$$

\mathbf{u}_{j} is the j-th column vector in U and $|j\rangle$ is the j-th computational basis vector.

- $I=\sum_{j=1}^{n}\left(\left|\omega_{j}^{+}\right\rangle\left\langle\omega_{j}^{+}\right|+\left|\omega_{j}^{-}\right\rangle\left\langle\omega_{j}^{-}\right|\right)$The completeness relation.
- $U^{\prime}=\sum_{j=1}^{n}\left(\left|\omega_{j}^{+}\right\rangle\left\langle\omega_{j}^{+}\right|-\left|\omega_{j}^{-}\right\rangle\left\langle\omega_{j}^{-}\right|\right)$The spectral theorem.

$$
I-U^{\prime}=2 \sum_{j=1}^{n}\left|\omega_{j}^{-}\right\rangle\left\langle\omega_{j}^{-}\right| \Rightarrow U^{\prime}=I-2 \sum_{j=1}^{n}\left|\omega_{j}^{-}\right\rangle\left\langle\omega_{j}^{-}\right|=\prod_{j=1}^{n} R_{\mid \omega_{j}^{-}} .
$$

Gate Complexity of the Householder Algorithm

Theorem

Let $U \in \mathcal{L}_{n}$ with $\operatorname{lde}_{\sqrt{2}}(U)=k$. Then U can be represented by $O\left(n^{2} k\right)$ generators over \mathcal{F}_{n} using the Householder algorithm.

Gate Complexity of the Householder Algorithm

Theorem

Let $U \in \mathcal{L}_{n}$ with $\operatorname{lde}_{\sqrt{2}}(U)=k$. Then U can be represented by $O\left(n^{2} k\right)$ generators over \mathcal{F}_{n} using the Householder algorithm.

Proof. We showed that U can be simulated by U^{\prime} where

$$
U^{\prime}=|+\rangle\langle-| \otimes U+|-\rangle\langle+| \otimes U^{\dagger}=\prod_{j=1}^{n} R_{\left|\omega_{j}^{-}\right\rangle} .
$$

Moreover, each $R_{\left|\omega_{j}^{-}\right\rangle}$can be exactly represented by $O(n k)$ generators from \mathcal{F}_{n}. Therefore, to represent U, we need $n \cdot O(n k)=O\left(n^{2} k\right)$ generators over \mathcal{F}_{n}.

The Global Synthesis Algorithm

- The AGR algorithm carries out matrix factorization locally - it synthesizes one column at a time.

The Global Synthesis Algorithm

- The AGR algorithm carries out matrix factorization locally - it synthesizes one column at a time.
- When n is fixed, both AGR and householder algorithms have the same worst-case gate complexity - linear in k.

The Global Synthesis Algorithm

- The AGR algorithm carries out matrix factorization locally - it synthesizes one column at a time.
- When n is fixed, both AGR and householder algorithms have the same worst-case gate complexity - linear in k.
- Next, we will take a global view of each matrix. This results in a smaller gate count in practice.

The Global Synthesis Algorithm

- The AGR algorithm carries out matrix factorization locally - it synthesizes one column at a time.
- When n is fixed, both AGR and householder algorithms have the same worst-case gate complexity - linear in k.
- Next, we will take a global view of each matrix. This results in a smaller gate count in practice.

$$
O\left(n^{2} k\right) \Longrightarrow O(k)
$$

The Global Synthesis Algorithm

- The AGR algorithm carries out matrix factorization locally - it synthesizes one column at a time.
- When n is fixed, both AGR and householder algorithms have the same worst-case gate complexity - linear in k.
- Next, we will take a global view of each matrix. This results in a smaller gate count in practice.

$$
O\left(n^{2} k\right) \Longrightarrow O(k)
$$

- Define a global synthesis method for $U \in \mathcal{L}_{8}$, then leverage this to find a global synthesis method for $U^{\prime} \in O_{8}$.

Intuition

$U \in \mathcal{L}_{8}$. Write $U=\frac{1}{\sqrt{2}^{k}} M$ with k minimal. There exists $\overrightarrow{G_{1}}, \ldots, \overrightarrow{G_{k}}$ over \mathcal{F}, such that

$$
\frac{1}{\sqrt{2}^{k}} M \xrightarrow{\overrightarrow{G_{1}}} \frac{1}{\sqrt{2}^{k-1}} M^{\prime} \xrightarrow{\overrightarrow{G_{2}}} \frac{1}{\sqrt{2}^{k-2}} M^{\prime \prime} \xrightarrow{\overrightarrow{G_{3}}} \cdots \xrightarrow{\overrightarrow{G_{k}}} \mathbb{I} .
$$

Therefore,

$$
\overrightarrow{G_{k}} \cdots \cdot \overrightarrow{G_{1}} U=\mathbb{I} \Longrightarrow U={\overrightarrow{G_{1}}}^{-1} \cdots \cdot \overrightarrow{G_{k}}-1
$$

Preliminaries

Binary Pattern

Let $U \in \mathcal{L}_{n}$. Write $U=\frac{1}{\sqrt{2}^{k}} M$ with k minimal. The residue $\bmod 2$ of M is called the binary pattern of U, denoted as \bar{U}.

Example: $U \in \mathcal{L}_{5}$

$$
U=\frac{1}{\sqrt{2}^{4}}\left[\begin{array}{ccccc}
3 & 1 & -1 & 1 & 2 \\
1 & 3 & 1 & -1 & -2 \\
-1 & 1 & 3 & 1 & 2 \\
1 & -1 & 1 & 3 & -2 \\
-2 & 2 & -2 & 2 & 0
\end{array}\right] \rightarrow \bar{U}=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Number Theoretic Property I

Weight Lemma

Let $U \in \mathcal{L}_{n}$ and $\operatorname{lde}_{\sqrt{2}}(U)=k \geq 2$. Let \mathbf{u} be an arbitrary column vector in \bar{U}. Then

$$
\left|\left\{u_{i} ; u_{i}=1,1 \leq i \leq n\right\}\right| \equiv 0(4) .
$$

In other words, in each column of \bar{U}, the 1 's occur in quadruples.

Number Theoretic Property I

Weight Lemma

Let $U \in \mathcal{L}_{n}$ and $\operatorname{lde}_{\sqrt{2}}(U)=k \geq 2$. Let \mathbf{u} be an arbitrary column vector in \bar{U}. Then

$$
\left|\left\{u_{i} ; u_{i}=1,1 \leq i \leq n\right\}\right| \equiv 0(4) .
$$

In other words, in each column of \bar{U}, the 1's occur in quadruples.

Proof. Let \mathbf{v} be a column vector in U and $\mathbf{v}=\frac{1}{\sqrt{2^{k}}} \mathbf{w}$, where $\mathbf{w} \in \mathbb{Z}^{n}$. Since $\langle\mathbf{v}, \mathbf{v}\rangle=1$, $\langle\mathbf{w}, \mathbf{w}\rangle=2^{k}$ and thus $\sum w_{i}^{2}=2^{k}$. When $k \geq 2, \sum w_{i}^{2} \equiv 0(4)$. Note that

$$
w_{i}^{2} \equiv 1(4) \Longleftrightarrow w_{i} \equiv 1(2), \quad w_{i}^{2} \equiv 0(4) \Longleftrightarrow w_{i} \equiv 0(2) .
$$

Hence the number of odd entries in w is a multiple of 4.

Number Theoretic Property II

Intuition: The 1's in any two distinct columns of \bar{U} collide evenly many times.

Collision Lemma

Let $U \in \mathcal{L}_{n}$ and $\operatorname{lde}_{\sqrt{2}}(U)=k>0$. Any two distinct columns in \bar{U} must have evenly many l's in common.

Example: Evenly many collisions

$$
u_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right], u_{2}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Example: Oddly many collisions

$$
u_{3}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right], u_{4}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
1 \\
0
\end{array}\right]
$$

Number Theoretic Property II

Intuition: The 1's in any two distinct columns of \bar{U} collide evenly many times.

Collision Lemma

Let $U \in \mathcal{L}_{n}$ and $\operatorname{lde}_{\sqrt{2}}(U)=k>0$. Any two distinct columns in \bar{U} must have evenly many l's in common.

```
Example: Evenly many collisions
```

$$
u_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right], u_{2}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Example: Oddly many collisions

$$
u_{3}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right], u_{4}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
1 \\
0
\end{array}\right]
$$

Binary Patterns of \mathcal{L}_{8}

Theorem

There exists a set \mathscr{P} of 14 binary patterns such that if $U \in \mathcal{L}_{8}$ and $\operatorname{lde}(U) \geq 2$, then $\bar{U} \in \mathcal{P}$ (up to row and column permutations, as well as taking transpose).

Proof. By a long case distinction using the Weight and Collision Lemmas.

Binary patterns that are "nice".

$$
A=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right], \quad B=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0
\end{array}\right], \ldots, K=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Binary patterns that are "not nice".

$L=\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0\end{array}\right], \quad M=\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right], \quad N=\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

Binary patterns that are "nice".

$$
A=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right], \quad B=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0
\end{array}\right], \ldots, K=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Binary patterns that are "not nice".

$L=\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0\end{array}\right], \quad M=\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right], \quad N=\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

Binary patterns that are "nice".

$$
A=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right], \quad B=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0
\end{array}\right], \ldots, K=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Binary patterns that are "not nice".

$L=\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0\end{array}\right], \quad M=\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right], \quad N=\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

Definition

A matrix $\bar{U} \in \mathbb{Z}_{2}^{8 \times 8}$ is row-paired if identical rows occur evenly many times.

Definition

A matrix $\bar{U} \in \mathbb{Z}_{2}^{8 \times 8}$ is column-paired if identical columns occur evenly many times.

Remark: We demonstrate an example and a counterexample when $n=4$.

Example: Row-paired and column-paired

$$
\bar{U}=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

Example: Only column-paired

$$
\bar{V}=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

Definition

A matrix $\bar{U} \in \mathbb{Z}_{2}^{8 \times 8}$ is row-paired if identical rows occur evenly many times.

Definition

A matrix $\bar{U} \in \mathbb{Z}_{2}^{8 \times 8}$ is column-paired if identical columns occur evenly many times.

Remark: We demonstrate an example and a counterexample when $n=4$.

Example: Row-paired and column-paired

$$
\bar{U}=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

Example: Only column-paired

$$
\bar{V}=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

Definition

A matrix $\bar{U} \in \mathbb{Z}_{2}^{8 \times 8}$ is row-paired if identical rows occur evenly many times.

Definition

A matrix $\bar{U} \in \mathbb{Z}_{2}^{8 \times 8}$ is column-paired if identical columns occur evenly many times.

Remark: We demonstrate an example and a counterexample when $n=4$.

Example: Row-paired and column-paired

$$
\bar{U}=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

Example: Only column-paired

$$
\bar{V}=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

Definition

A matrix $\bar{U} \in \mathbb{Z}_{2}^{8 \times 8}$ is row-paired if identical rows occur evenly many times.

Definition

A matrix $\bar{U} \in \mathbb{Z}_{2}^{8 \times 8}$ is column-paired if identical columns occur evenly many times.

Remark: We demonstrate an example and a counterexample when $n=4$.

Example: Row-paired and column-paired

$$
\bar{U}=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

Example: Only column-paired

$$
\bar{V}=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

Definition

A matrix $\bar{U} \in \mathbb{Z}_{2}^{8 \times 8}$ is row-paired if identical rows occur evenly many times.

Definition

A matrix $\bar{U} \in \mathbb{Z}_{2}^{8 \times 8}$ is column-paired if identical columns occur evenly many times.

Remark: We demonstrate an example and a counterexample when $n=4$.

Example: Row-paired and column-paired

$$
\bar{U}=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

Example: Only column-paired

$$
\bar{V}=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

When the Binary Pattern is "Nice"

Theorem (Row-paired Reduction)

If $U \in \mathcal{L}_{8}$ and \bar{U} is row-paired, then there exists $P \in S_{8}$ such that $\operatorname{lde}_{\sqrt{2}}(((I \otimes H) P) U)<\operatorname{lde}_{\sqrt{2}}(U)$.

Theorem (Column-paired Reduction)

If $U \in \mathcal{L}_{8}$ and \bar{U} is column-paired, then there exists $P \in S_{8}$ such that $\operatorname{lde}_{\sqrt{2}}(U(P(I \otimes H)))<\operatorname{lde}_{\sqrt{2}}(U)$.

Remark: Below we sketch the proof for the Row-paired Reduction using a 6×6 matrix as an example.

Proof. Consider $U \in \mathcal{L}_{6}$ with $\operatorname{lde}_{\sqrt{2}}(U)=k$. Since \bar{U} is row-paired, there exists $P \in S_{6}$ such that

$$
\begin{gathered}
P U=\frac{1}{\sqrt{2}^{k}}\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{6}
\end{array}\right], \text { where } r_{1} \equiv r_{2}(2), r_{3} \equiv r_{4}(2), r_{5} \equiv r_{6}(2) . \text { Now } \\
H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \text { and } I \otimes H=\left[\begin{array}{c|c|c}
H & \mathbf{0} & \mathbf{0} \\
\hline \mathbf{0} & H & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{0} & H
\end{array}\right] . \text { Therefore, } \\
(I \otimes H) P U=\frac{1}{\sqrt{2}^{k+1}}\left[\begin{array}{l}
r_{1}+r_{2} \\
r_{1}-r_{2} \\
r_{3}+r_{4} \\
r_{3}-r_{4} \\
r_{5}+r_{6} \\
r_{5}-r_{6}
\end{array}\right]=\frac{2}{\sqrt{2}^{k+1}}\left[\begin{array}{c}
r_{1}^{\prime} \\
\vdots \\
r_{6}^{\prime}
\end{array}\right]=\frac{1}{\sqrt{2}^{k-1}}\left[\begin{array}{c}
r_{1}^{\prime} \\
\vdots \\
r_{6}^{\prime}
\end{array}\right], \text { where } r_{1}^{\prime}, \ldots, r_{6}^{\prime} \in \mathbb{Z}^{1 \times 6} .
\end{gathered}
$$

Hence lde $\sqrt{2}(((I \otimes H) P) U)<\operatorname{lde}_{\sqrt{2}}(U)$, for some $P \in S_{6}$.

When the Binary Pattern is "NOT Nice"

Theorem

Consider $U \in \mathcal{L}_{8}$ and \bar{U} is neither row-paired nor column-paired. Let $U^{\prime}=(I \otimes H) U(I \otimes H)$. Then $\overline{U^{\prime}}$ is row-paired and lde $\sqrt{2}\left(U^{\prime}\right) \leq \operatorname{lde}_{\sqrt{2}}(U)$.

Proof. By direct computation.

Global Synthesis for \mathcal{L}_{8}

Theorem

Let $U \in \mathcal{L}_{8}$ and $\operatorname{lde}_{\sqrt{2}}(U)=k$. Then there exists C over \mathcal{F} such that $[[C]]=U$ and the length of C is $O(k)$.

Proof. Let $U \in \mathcal{L}_{8}$, proceed by induction on k.

- $k \leq 1$, there exists C composed of $(-1)_{[\alpha]}, X_{[\alpha, \beta]}$ and $I \otimes H$ such that $[[C]=U$ and the length of C is $O(1)$.
- $k \geq 2, \bar{U}$ must be one of the 14 binary patterns.
* If \bar{U} is nice, then $\operatorname{lde}((I \otimes H) P U) \leq k-1$ and proceed recursively with $(I \otimes H) P U$.
* If \bar{U} is not nice, then $(I \otimes H) U(I \otimes H)$ is nice so lde $((I \otimes H) P(I \otimes H) U(I \otimes H)) \leq k-1$ and proceed recursively with $(I \otimes H) P(I \otimes H) U(I \otimes H)$.

Generator Relations for \mathcal{L}_{8} and $O_{8}{ }^{3}$

- \mathcal{L}_{8} is generated by $\mathcal{F}=\left\{(-1)_{[\alpha]}, X_{[\alpha, \beta]}, K_{[\alpha, \beta, \gamma, \delta]}, I \otimes H: 1 \leq \alpha<\beta<\gamma<\delta \leq 8\right\}$.
- O_{8} is generated by $\mathcal{G}=\left\{(-1)_{[\alpha]}, X_{[\alpha, \beta]}, K_{[\alpha, \beta, \gamma, \delta]}: 1 \leq \alpha<\beta<\gamma<\delta \leq 8\right\}$.

$$
\begin{align*}
(I \otimes H)(I \otimes H) & =\epsilon \tag{1}\\
(I \otimes H)(-1)_{[1]} & =(-1)_{[1]} X_{[1,2]}(-1)_{[1]}(I \otimes H) \tag{2}\\
(I \otimes H) X_{[a, a+1]} & =(-1)_{[a+1]}^{a+1} X_{[a, a+1]}^{a} K_{[a-1, a, a+1, a+2]}^{a}(I \otimes H) \tag{3}\\
(I \otimes H) K_{[1,2,3,4]} & =K_{[1,2,3,4]}(I \otimes H) \tag{4}
\end{align*}
$$

Intuition: Commuting $I \otimes H$ with an element in \mathcal{G} adds $O(1)$ gates.

[^7]
Relations for \mathcal{L}_{8}

Lemma

For any M over \mathcal{G}, there exists M^{\prime} over \mathcal{G} such that $(I \otimes H) M=M^{\prime}(I \otimes H)$. Moreover, if M has length $O(m)$, then M^{\prime} has length $O(m)$.

```
Example:
```

$$
\begin{aligned}
(I \otimes H) K_{[1,2,3,4]}(-1)_{[1]} X_{[1,2]}(I \otimes H) & =K_{[1,2,3,4]}(I \otimes H)(-1)_{[1]} X_{[1,2]}(I \otimes H) \\
& =K_{[1,2,3,4]}(-1)_{[1]} X_{[1,2]}(-1)_{[1]}(I \otimes H) X_{[1,2]}(I \otimes H) \\
& =K_{[1,2,3,4]}(-1)_{[1]} X_{[1,2]}(-1)_{[1]}(-1)_{[2]}(I \otimes H)(I \otimes H) \\
& =K_{[1,2,3,4]}(-1)_{[1]} X_{[1,2]}(-1)_{[1]}(-1)_{[2]} .
\end{aligned}
$$

Global Synthesis for O_{8}

Theorem

Let $U \in O_{8}$ and $\operatorname{lde}(U)=k \geq 1$. Then there exists C over \mathcal{G} such that $[[C]]=U$ and the length of C is $O(k)$.

Proof. Let $U \in O_{8}$ and $\operatorname{lde}(U)=k$. Then $U \in \mathcal{L}_{8}$ with $\operatorname{lde}_{\sqrt{2}}(U)=2 k$. Using the global synthesis for \mathcal{L}_{8}, we can express U as a word W over \mathcal{F} with evenly many occurrences of $I \otimes H$, and the length of W is $O(k)$. Consider any subword W_{i} of the form

$$
(I \otimes H) C(I \otimes H),
$$

where C does not contain $I \otimes H$.

Global Synthesis for O_{8}

Theorem

Consider $U \in O_{8}$ and $\operatorname{lde}(U)=k \geq 1$. Then there exists C over \mathcal{G} such that $[[C]]=U$ and the length of C is $O(k)$.

Proof Continued. Suppose the length of W_{i} is $O(k)$. Then

$$
W_{i}=(I \otimes H) C(I \otimes H) \longrightarrow C^{\prime}(I \otimes H)(I \otimes H) \longrightarrow C^{\prime}
$$

Wi can be rewritten as a word C^{\prime} over \mathcal{G} of length at most $3 * O(k)$ generators. Hence we can rewrite W as a word W^{\prime} over \mathcal{G} of length no more than $3 * O(k)$.

Future Work

- Benchmark our global synthesis algorithm with other state-of-the-art algorithms to compare their performance in practice.

Future Work

- Benchmark our global synthesis algorithm with other state-of-the-art algorithms to compare their performance in practice.
- Design a standalone global synthesis for O_{8}, rather than relying on the corresponding result for \mathcal{L}_{8} and the commutation of generators.

Future Work

- Benchmark our global synthesis algorithm with other state-of-the-art algorithms to compare their performance in practice.
- Design a standalone global synthesis for O_{8}, rather than relying on the corresponding result for \mathcal{L}_{8} and the commutation of generators.
- Extend the global synthesis to arbitrary dimensions: O_{n} and \mathcal{L}_{n}.

Future Work

- Benchmark our global synthesis algorithm with other state-of-the-art algorithms to compare their performance in practice.
- Design a standalone global synthesis for O_{8}, rather than relying on the corresponding result for \mathcal{L}_{8} and the commutation of generators.
- Extend the global synthesis to arbitrary dimensions: O_{n} and \mathcal{L}_{n}.
- Present the global synthesis results of O_{n} and \mathcal{L}_{n} in terms of the restricted Clifford+T circuits over $\{X, C X, C C X, K\}$ and $\{X, C X, C C X, H\}$ respectively.

Thank you!

[^0]: ${ }^{1}$ Amy, M., Glaudell, A. N., \& Ross, N. J. (2020). Number-theoretic characterizations of some restricted Clifford+T circuits. Quantum, 4, 252.

[^1]: ${ }^{1}$ Amy, M., Glaudell, A. N., \& Ross, N. J. (2020). Number-theoretic characterizations of some restricted Clifford+T circuits. Quantum, 4, 252.

[^2]: ${ }^{1}$ Amy, M., Glaudell, A. N., \& Ross, N. J. (2020). Number-theoretic characterizations of some restricted Clifford+T circuits. Quantum, 4, 252.

[^3]: ${ }^{1}$ Amy, M., Glaudell, A. N., \& Ross, N. J. (2020). Number-theoretic characterizations of some restricted Clifford+T circuits. Quantum, 4, 252.

[^4]: ${ }^{2}$ Vadym Kliuchnikov (2013). "Synthesis of unitaries with Clifford+ T circuits". In: arXiv preprint arXiv:1306.3200.

[^5]: ${ }^{2}$ Vadym Kliuchnikov (2013). "Synthesis of unitaries with Clifford+ T circuits". In: arXiv preprint arXiv:1306.3200.

[^6]: ${ }^{2}$ Vadym Kliuchnikov (2013). "Synthesis of unitaries with Clifford+ T circuits". In: arXiv preprint arXiv:1306.3200.

[^7]: ${ }^{3}$ Sarah Meng Li, Neil J Ross, and Peter Selinger (2021). "Generators and relations for the group $O_{n}(\mathbb{Z}[1 / 2])$ ". In: arXiv preprint arXiv:2106.01775.

