Improved Synthesis of Toffoli-Hadamard Circuits

Matthew Amy¹, Andrew N. Glaudell², Sarah Meng Li³, Neil J. Ross²

¹School of Computing Science, Simon Fraser University
 ²Photonic Inc.
 ³Institute for Quantum Computing, University of Waterloo
 ⁴Department of Mathematics and Statistics, Dalhousie University

April 3rd, 2023

Quantum Algorithm: Carrying out a well-defined task.

Quantum Algorithm: Carrying out a well-defined task.

Quantum Compilation: Program \Rightarrow Sequence of elementary quantum gates.

Quantum Algorithm: Carrying out a well-defined task.

Quantum Compilation: Program \Rightarrow Sequence of elementary quantum gates.

Implementation: Mapping unitary operations to physical architectures.

Toffoli-Hadamard circuits are quantum circuits over the gate set

 $\{X, CX, CCX, H\}.$

¹Amy, M., Glaudell, A. N., & Ross, N. J. (2020). Number-theoretic characterizations of some restricted Clifford+T circuits. Quantum, 4, 252.

Restricted Clifford+T Circuits

A Toffoli-Hadamard Circuit

A Toffoli-K Circuit

Basic Gates

(-1) = [-1]

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad CX = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} I_2 & \mathbf{0} \\ \mathbf{0} & X \end{bmatrix}, \quad CCX = \begin{bmatrix} I_6 & \mathbf{0} \\ \mathbf{0} & X \end{bmatrix}$$

- A family of quantum circuits corresponds to a group of matrices.
- Studying matrix groups is a way to study quantum circuits.

• \mathcal{L}_n is the group of **orthogonal scaled dyadic matrices**, which consists of $n \times n$ orthogonal matrices of the form $M/\sqrt{2}^k$, where M is an integer matrix and k is a nonnegative integer.

- \mathcal{L}_n is the group of **orthogonal scaled dyadic matrices**, which consists of $n \times n$ orthogonal matrices of the form $M/\sqrt{2}^k$, where M is an integer matrix and k is a nonnegative integer.
- Example: $V \in \mathcal{L}_4$

$$V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & -1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$

• $\mathbb{Z}\left[\frac{1}{2}\right] = \left\{\frac{u}{2^{q}} | u \in \mathbb{Z}, q \in \mathbb{N}\right\}$ is the ring of *dyadic fractions*.

- $\mathbb{Z}\left[\frac{1}{2}\right] = \left\{\frac{u}{2^{q}} | u \in \mathbb{Z}, q \in \mathbb{N}\right\}$ is the ring of *dyadic fractions*.
- $O_n(\mathbb{Z}\begin{bmatrix}\frac{1}{2}\end{bmatrix})$ is the group of *orthogonal dyadic matrices*, which consists of $n \times n$ orthogonal matrices of the form $M/2^k$, where M is an integer matrix and k is a nonnegative integer. For short, we denote it as O_n .

- $\mathbb{Z}\left[\frac{1}{2}\right] = \left\{\frac{u}{2^{q}} | u \in \mathbb{Z}, q \in \mathbb{N}\right\}$ is the ring of *dyadic fractions*.
- $O_n(\mathbb{Z}\begin{bmatrix}\frac{1}{2}\end{bmatrix})$ is the group of *orthogonal dyadic matrices*, which consists of $n \times n$ orthogonal matrices of the form $M/2^k$, where M is an integer matrix and k is a nonnegative integer. For short, we denote it as O_n .
- Example: $U \in O_5$

$$U = \begin{bmatrix} 3/4 & 1/4 & -1/4 & 1/4 & 1/2 \\ 1/4 & 3/4 & 1/4 & -1/4 & -1/2 \\ -1/4 & 1/4 & 3/4 & 1/4 & 1/2 \\ 1/4 & -1/4 & 1/4 & 3/4 & -1/2 \\ -1/2 & 1/2 & -1/2 & 1/2 & 0 \end{bmatrix}$$

- $\mathbb{Z}\left[\frac{1}{2}\right] = \left\{\frac{u}{2^{q}} | u \in \mathbb{Z}, q \in \mathbb{N}\right\}$ is the ring of *dyadic fractions*.
- $O_n(\mathbb{Z}\begin{bmatrix}\frac{1}{2}\end{bmatrix})$ is the group of *orthogonal dyadic matrices*, which consists of $n \times n$ orthogonal matrices of the form $M/2^k$, where M is an integer matrix and k is a nonnegative integer. For short, we denote it as O_n .
- Example: $U \in O_5$

$$U = \begin{bmatrix} 3/4 & 1/4 & -1/4 & 1/4 & 1/2 \\ 1/4 & 3/4 & 1/4 & -1/4 & -1/2 \\ -1/4 & 1/4 & 3/4 & 1/4 & 1/2 \\ 1/4 & -1/4 & 1/4 & 3/4 & -1/2 \\ -1/2 & 1/2 & -1/2 & 1/2 & 0 \end{bmatrix}$$

- $\mathbb{Z}\left[\frac{1}{2}\right] = \left\{\frac{u}{2^{q}} | u \in \mathbb{Z}, q \in \mathbb{N}\right\}$ is the ring of *dyadic fractions*.
- $O_n(\mathbb{Z}\begin{bmatrix}\frac{1}{2}\end{bmatrix})$ is the group of *orthogonal dyadic matrices*, which consists of $n \times n$ orthogonal matrices of the form $M/2^k$, where M is an integer matrix and k is a nonnegative integer. For short, we denote it as O_n .
- Example: $U \in O_5$

$$U = \frac{1}{2^2} \begin{bmatrix} 3 & 1 & -1 & 1 & 2\\ 1 & 3 & 1 & -1 & -2\\ -1 & 1 & 3 & 1 & 2\\ 1 & -1 & 1 & 3 & -2\\ -2 & 2 & -2 & 2 & 0 \end{bmatrix}$$

Orthogonal (Scaled) Dyadic Matrices

- \mathcal{L}_n is the group of **orthogonal scaled dyadic matrices**, which consists of $n \times n$ orthogonal matrices of the form $M/\sqrt{2}^k$, where M is an integer matrix and k is a nonnegative integer.
- O_n is the group of **orthogonal dyadic matrices**, which consists of $n \times n$ orthogonal matrices of the form $M/2^k$, where M is an integer matrix and k is a nonnegative integer.

•
$$O_n \subset \mathcal{L}_n$$
.

Example:
$$V \in \mathcal{L}_4$$

 $V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & -1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$
 $U = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 1 \\ 1 & -1 \end{bmatrix}$

 $\begin{array}{ccc} -1 & -1 \\ -1 & 1 \\ 1 & -1 \\ 1 & 1 \end{array}$

Orthogonal (Scaled) Dyadic Matrices

- \mathcal{L}_n is the group of **orthogonal scaled dyadic matrices**, which consists of $n \times n$ orthogonal matrices of the form $M/\sqrt{2}^k$, where M is an integer matrix and k is a nonnegative integer.
- O_n is the group of **orthogonal dyadic matrices**, which consists of $n \times n$ orthogonal matrices of the form $M/2^k$, where M is an integer matrix and k is a nonnegative integer.

•
$$O_n \subset \mathcal{L}_n$$
.

Example:
$$V \in \mathcal{L}_4$$
 Example: $U \in O_4$
 $V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & -1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$
 $U = \frac{1}{\sqrt{2}^2} \begin{bmatrix} 1 & -1 & -1 & -1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \\ 1 & -1 & 1 & 1 \end{bmatrix}$

Constructive Membership Problem (CMP)

Let \mathcal{G} be a group and let \mathcal{S} be a set of generators for \mathcal{G} . The *constructive* membership problem for \mathcal{G} and \mathcal{S} , denoted $\mathcal{P}(\mathcal{G}, \mathcal{S})$, is the following:

Given $g \in \mathcal{G}$, find a sequence of generators $s_1, \ldots, s_\ell \in \mathcal{S}$ such that

 $s_1 \cdot \ldots \cdot s_\ell = g,$

where \cdot is the group operation.

• The smaller the ℓ , the better the solution.

Constructive Membership Problem (CMP)

Let \mathcal{G} be a group and let \mathcal{S} be a set of generators for \mathcal{G} . The *constructive* membership problem for \mathcal{G} and \mathcal{S} , denoted $\mathcal{P}(\mathcal{G}, \mathcal{S})$, is the following:

Given $g \in G$, find a sequence of generators $s_1, \ldots, s_\ell \in S$ such that

 $s_1 \cdot \ldots \cdot s_\ell = g,$

where \cdot is the group operation.

- The smaller the ℓ , the better the solution.
- A solution is optimal if the sequence is a shortest possible sequence.

Constructive Membership Problem (CMP)

Let \mathcal{G} be a group and let \mathcal{S} be a set of generators for \mathcal{G} . The *constructive* membership problem for \mathcal{G} and \mathcal{S} , denoted $\mathcal{P}(\mathcal{G}, \mathcal{S})$, is the following:

Given $g \in G$, find a sequence of generators $s_1, \ldots, s_\ell \in S$ such that

 $s_1 \cdot \ldots \cdot s_\ell = g$,

where \cdot is the group operation.

- The smaller the ℓ , the better the solution.
- A solution is optimal if the sequence is a shortest possible sequence.
- An algorithm to solve the CMP is called an *exact synthesis algorithm*.

Theorem (Solutions to CMP: The AGR Algorithm¹)

For an n-dimensional orthogonal matrix U,

- it can be exactly represented by a circuit over $\{X, CX, CCX, H\}$ iff $U \in \mathcal{L}_n$.
- it can be exactly represented by a circuit over $\{X, CX, CCX, K\}$ iff $U \in O_n$.

The gate complexity of the AGR algorithm in both cases is $O(2^n \log(n)k)$.

• A good solution to CMP yields shorter quantum circuits.

¹Amy, M., Glaudell, A. N., & Ross, N. J. (2020). Number-theoretic characterizations of some restricted Clifford+T circuits. Quantum, 4, 252.

Theorem (Solutions to CMP: The AGR Algorithm¹)

For an n-dimensional orthogonal matrix U,

- it can be exactly represented by a circuit over $\{X, CX, CCX, H\}$ iff $U \in \mathcal{L}_n$.
- it can be exactly represented by a circuit over $\{X, CX, CCX, K\}$ iff $U \in O_n$.

The gate complexity of the AGR algorithm in both cases is $O(2^n \log(n)k)$.

- A good solution to CMP yields shorter quantum circuits.
- Can we find a good solution to the CMP for O_n and \mathcal{L}_n ?

¹Amy, M., Glaudell, A. N., & Ross, N. J. (2020). Number-theoretic characterizations of some restricted Clifford+T circuits. Quantum, 4, 252.

Two-level Operator: $U_{[\alpha,\beta]}$

Definition Let $U = \begin{bmatrix} x_{1,1} & x_{1,2} \\ x_{2,1} & x_{2,2} \end{bmatrix}$. The action of $U_{[\alpha,\beta]}$, $1 \le \alpha < \beta \le n$, is defined as $U_{[\alpha,\beta]}v = w$, where $\begin{cases} \begin{bmatrix} w_{\alpha} \\ w_{\beta} \end{bmatrix} = U \begin{bmatrix} v_{\alpha} \\ v_{\beta} \end{bmatrix}$, $w_i = v_i, i \notin \{\alpha, \beta\}$.

Example:

Let
$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
. Then $X_{[2,3]} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ and $X_{[2,3]} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_3 \\ v_4 \\ v_4 \end{bmatrix}$.

Four-level Operator: $U_{[\alpha,\beta,\gamma,\delta]}$

Similarly, we can create a four-level operator by embedding a 4×4 matrix U into an $n \times n$ identity matrix.

$$K_{[1,2,4,6]} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \\ v_6 \end{bmatrix} = \begin{bmatrix} (v_1 + v_2 + v_4 + v_6)/2 \\ (v_1 - v_2 + v_4 - v_6)/2 \\ v_3 \\ (v_1 + v_2 - v_4 - v_6)/2 \\ v_5 \\ (v_1 - v_2 - v_4 + v_6)/2 \end{bmatrix}.$$

The Circuit-Matrix Correspondence II

$$\begin{aligned} \mathcal{F}_n &= \left\{ (-1)_{\left[\alpha\right]}, X_{\left[\alpha,\beta\right]}, K_{\left[\alpha,\beta,\gamma,\delta\right]}, I_{n/2} \otimes H : 1 \leq \alpha < \beta < \gamma < \delta \leq n \right\}. \\ \mathcal{G}_n &= \left\{ (-1)_{\left[\alpha\right]}, X_{\left[\alpha,\beta\right]}, K_{\left[\alpha,\beta,\gamma,\delta\right]} : 1 \leq \alpha < \beta < \gamma < \delta \leq n \right\}. \end{aligned}$$

Theorem (Solutions to CMP: The AGR Algorithm¹)

Let U be an $n \times n$ matrix.

- $U \in \mathcal{L}_n$ iff U can be written as a product of elements of \mathcal{F}_n .
- $U \in O_n$ iff U can be written as a product of elements of \mathcal{G}_n .
- When $n = 2^m$, every operator in \mathcal{G}_n and \mathcal{F}_n can be exactly represented by $O(\log(n))$ operators in $\{X, CX, CCX, K\}$ and $\{X, CX, CCX, H\}$, respectively.

¹Amy, M., Glaudell, A. N., & Ross, N. J. (2020). Number-theoretic characterizations of some restricted Clifford+T circuits. Quantum, 4, 252.

Let $t \in \mathbb{Z}\begin{bmatrix} \frac{1}{2} \end{bmatrix}$. $t = \frac{a}{2^k}$, where $a \in \mathbb{Z}$ and $k \in \mathbb{N}$. k is a *denominator exponent* for t. The minimal such k is called the *least denominator exponent* of t, written lde(t).

Let $t \in \mathbb{Z}\begin{bmatrix} \frac{1}{2} \end{bmatrix}$. $t = \frac{a}{2^k}$, where $a \in \mathbb{Z}$ and $k \in \mathbb{N}$. k is a *denominator exponent* for t. The minimal such k is called the *least denominator exponent* of t, written lde(t).

Let $t \in \mathbb{Z}\begin{bmatrix} \frac{1}{2} \end{bmatrix}$. $t = \frac{a}{2^k}$, where $a \in \mathbb{Z}$ and $k \in \mathbb{N}$. k is a *denominator exponent* for t. The minimal such k is called the *least denominator exponent* of t, written lde(t).

Lemma (Base Case)

Let $v \in \mathbb{Z}\left[\frac{1}{2}\right]^n$ be a unit vector. Let k = lde(v). If k = 0, then $v = \pm e_j$ for some $j \in \{1, ..., n\}$.

Lemma (Count)

Let $v \in \mathbb{Z}\left[\frac{1}{2}\right]^n$ be a unit vector, and lde(v) = k > 0. Let $w = 2^k v$. Then the number of odd entries in w is a multiple of 4.

Lemma (Parity Reduction)

Let u_1, u_2, u_3, u_4 be odd integers. Then there exist $\tau_1, \tau_2, \tau_3, \tau_4 \in \mathbb{Z}_2$ such that

$$K_{[1,2,3,4]}(-1)_{[1]}^{\tau_1}(-1)_{[2]}^{\tau_2}(-1)_{[3]}^{\tau_3}(-1)_{[4]}^{\tau_4}\begin{bmatrix}u_1\\u_2\\u_3\\u_4\end{bmatrix} = \begin{bmatrix}u_1'\\u_2'\\u_3'\\u_4'\end{bmatrix}, u_1', u_2', u_3', u_4' \text{ are even integers.}$$

The AGR Algorithm (I)

The AGR Algorithm (II)

- The algorithm proceeds one column at a time, reducing each column to a corresponding basis vector.
- While outputting a word $\overrightarrow{G_{\ell}}$ after each iteration, the algorithm recursively acts on the input matrix until it is reduced to the identity matrix I.

$$M \xrightarrow{\overrightarrow{G_1}} \begin{pmatrix} & & 0 \\ & & \vdots \\ & & 0 \\ \hline 0 & \cdots & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{G_2}} \begin{pmatrix} & & 0 & 0 \\ & M'' & \vdots & \vdots \\ & & 0 & 0 \\ \hline 0 & \cdots & 0 & 1 & 0 \\ 0 & \cdots & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{G_d}} \mathbb{I}$$

$$\overrightarrow{G_{\ell}} \cdots \overrightarrow{G_{1}}M = \mathbb{I} \Rightarrow M = \overrightarrow{G_{1}}^{-1} \cdots \overrightarrow{G_{\ell}}^{-1}$$

The AGR Algorithm (II)

- The algorithm proceeds one column at a time, reducing each column to a corresponding basis vector.
- While outputting a word $\overrightarrow{G_{\ell}}$ after each iteration, the algorithm recursively acts on the input matrix until it is reduced to the identity matrix I.

$$M \xrightarrow{\overrightarrow{G_1}} \begin{pmatrix} & & 0 \\ & & & \\ & & 0 \\ \hline 0 & \cdots & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{G_2}} \begin{pmatrix} & & 0 & 0 \\ & & & \vdots & \vdots \\ & & & 0 & 0 \\ \hline 0 & \cdots & 0 & 1 & 0 \\ 0 & \cdots & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{G_3}} \cdots \xrightarrow{\overrightarrow{G_\ell}} \mathbb{I}$$

$$e_n$$

$$\overrightarrow{G_{\ell}} \cdots \overrightarrow{G_{1}}M = \mathbb{I} \Rightarrow M = \overrightarrow{G_{1}}^{-1} \cdots \overrightarrow{G_{\ell}}^{-1}$$

The AGR Algorithm (II)

- The algorithm proceeds one column at a time, reducing each column to a corresponding basis vector.
- While outputting a word $\overrightarrow{G_{\ell}}$ after each iteration, the algorithm recursively acts on the input matrix until it is reduced to the identity matrix I.

Gate Complexity of the AGR Algorithm

Lemma

Let $\mathbf{u} \in \mathbb{Z}\left[\frac{1}{2}\right]^n$ with $\operatorname{lde}(\mathbf{u}) = k$. The number of generators in \mathcal{G}_n to reduce \mathbf{u} to \mathbf{e}_j is O(nk).

Theorem

Let $U \in O_n$ with lde(U) = k. U can be exactly represented by $O(2^n k)$ generators over \mathcal{G}_n .

Proof. Let $f_{\mathbf{u}_i}$ be the cost of reducing \mathbf{u}_i to \mathbf{e}_i .

- Each row operation may increase the Ide of any column in U by 1.
- During reduction, the lde of any other column may increase up to 2k.

$$\begin{aligned} f_{\mathbf{u}_1} &= O\left(nk\right), \quad f_{\mathbf{u}_2} &= O\left((n-1)2k\right), \quad f_{\mathbf{u}_3} &= O\left((n-2)2^2k\right), \quad \dots, \quad f_{\mathbf{u}_n} &= O\left(2^{n-1}k\right). \\ S_n &= \sum_{i=1}^n f_{\mathbf{u}_i} = \sum_{i=1}^n (n-i+1)2^{i-1}k = O(2^nk). \end{aligned}$$

The Householder Algorithm²

With **ancillary qubits**, the gate complexity of the exact synthesis for \mathcal{L}_n over \mathcal{F}_n is reduced from $O(2^n k)$ to $O(n^2 k)$.

²Vadym Kliuchnikov (2013). "Synthesis of unitaries with Clifford+ T circuits". In: *arXiv* preprint arXiv:1306.3200.

The Householder Algorithm²

With **ancillary qubits**, the gate complexity of the exact synthesis for \mathcal{L}_n over \mathcal{F}_n is reduced from $O(2^n k)$ to $O(n^2 k)$.

Definition

For an *n*-dimensional unit vector $|\psi\rangle$, the reflection operator around $|\psi\rangle$ is

 $R_{|\psi\rangle} = I - 2 |\psi\rangle \langle \psi|.$

²Vadym Kliuchnikov (2013). "Synthesis of unitaries with Clifford+ T circuits". In: *arXiv* preprint arXiv:1306.3200.
The Householder Algorithm²

With **ancillary qubits**, the gate complexity of the exact synthesis for \mathcal{L}_n over \mathcal{F}_n is reduced from $O(2^n k)$ to $O(n^2 k)$.

Definition

For an *n*-dimensional unit vector $|\psi\rangle$, the reflection operator around $|\psi\rangle$ is

 $R_{|\psi\rangle} = I - 2 |\psi\rangle \langle \psi|.$

Proposition: Gate Complexity of the Reflection Operator

Let $|\psi\rangle = \mathbf{v}/\sqrt{2}^k$ be an *n*-dimensional unit vector with $\operatorname{lde}_{\sqrt{2}}(|\psi\rangle) = k$, **v** is an integer vector. The reflection operator $R_{|\psi\rangle}$ can be exactly represented by O(nk) generators over \mathcal{F}_n .

²Vadym Kliuchnikov (2013). "Synthesis of unitaries with Clifford+ T circuits". In: *arXiv preprint arXiv:1306.3200*.

Let $U \in \mathcal{L}_n$. Then U can be simulated using the unitary

 $U' = \left| + \right\rangle \left\langle - \right| \otimes U + \left| - \right\rangle \left\langle + \right| \otimes U^{\dagger}.$

Moreover, $U' \in \mathcal{L}_{2n}$ and U' can be factored as a product $U' = \prod_{j=1}^{n} R_{|\omega_j^-\rangle}$ of reflection operators around vectors

$$|\omega_j^-\rangle = \frac{\left(|-\rangle |j\rangle - |+\rangle |\mathbf{u}_j\rangle\right)}{\sqrt{2}},$$

Let $U \in \mathcal{L}_n$. Then U can be simulated using the unitary

 $U' = \left| + \right\rangle \left\langle - \right| \otimes U + \left| - \right\rangle \left\langle + \right| \otimes U^{\dagger}.$

Moreover, $U' \in \mathcal{L}_{2n}$ and U' can be factored as a product $U' = \prod_{j=1}^{n} R_{|\omega_j^-\rangle}$ of reflection operators around vectors

$$|\omega_{j}^{-}\rangle = \frac{\left(|-\rangle|j\rangle - |+\rangle|\mathbf{u}_{j}\rangle\right)}{\sqrt{2}},$$

Let $U \in \mathcal{L}_n$. Then U can be simulated using the unitary

 $U' = \left|+\right\rangle \left\langle-\right| \otimes U + \left|-\right\rangle \left\langle+\right| \otimes U^{\dagger}.$

Moreover, $U' \in \mathcal{L}_{2n}$ and U' can be factored as a product $U' = \prod_{j=1}^{n} R_{|\omega_j^-\rangle}$ of reflection operators around vectors

$$|\omega_{j}^{-}\rangle = \frac{\left(|-\rangle|j\rangle - |+\rangle|\mathbf{u}_{j}\rangle\right)}{\sqrt{2}},$$

•
$$I = \sum_{j=1}^{n} \left(|\omega_{j}^{+}\rangle \langle \omega_{j}^{+}| + |\omega_{j}^{-}\rangle \langle \omega_{j}^{-}| \right)$$
 The completeness relation.

Let $U \in \mathcal{L}_n$. Then U can be simulated using the unitary

 $U' = \left|+\right\rangle \left\langle-\right| \otimes U + \left|-\right\rangle \left\langle+\right| \otimes U^{\dagger}.$

Moreover, $U' \in \mathcal{L}_{2n}$ and U' can be factored as a product $U' = \prod_{j=1}^{n} R_{|\omega_j^-\rangle}$ of reflection operators around vectors

$$|\omega_{j}^{-}\rangle = \frac{\left(|-\rangle|j\rangle - |+\rangle|\mathbf{u}_{j}\rangle\right)}{\sqrt{2}},$$

Let $U \in \mathcal{L}_n$. Then U can be simulated using the unitary

 $U' = \left| + \right\rangle \left\langle - \right| \otimes U + \left| - \right\rangle \left\langle + \right| \otimes U^{\dagger}.$

Moreover, $U' \in \mathcal{L}_{2n}$ and U' can be factored as a product $U' = \prod_{j=1}^{n} R_{|\omega_j^-\rangle}$ of reflection operators around vectors

$$|\omega_{j}^{-}\rangle = \frac{\left(|-\rangle|j\rangle - |+\rangle|\mathbf{u}_{j}\rangle\right)}{\sqrt{2}},$$

Theorem

Let $U \in \mathcal{L}_n$ with $\operatorname{lde}_{\sqrt{2}}(U) = k$. Then U can be represented by $O(n^2k)$ generators over \mathcal{F}_n using the Householder algorithm.

Theorem

Let $U \in \mathcal{L}_n$ with $\operatorname{lde}_{\sqrt{2}}(U) = k$. Then U can be represented by $O(n^2k)$ generators over \mathcal{F}_n using the Householder algorithm.

Proof. We showed that U can be simulated by U' where

$$U' = \ket{+} \langle - \ket{\otimes U} + \ket{-} \langle + \ket{\otimes U^{\dagger}} = \prod_{j=1}^{n} R_{\ket{\omega_{j}^{-}}}.$$

Moreover, each $R_{|\omega_j^-\rangle}$ can be exactly represented by O(nk) generators from \mathcal{F}_n . Therefore, to represent U, we need $n \cdot O(nk) = O(n^2k)$ generators over \mathcal{F}_n .

The Global Synthesis Algorithm

• The AGR algorithm carries out matrix factorization **locally** - it synthesizes one column at a time.

- The AGR algorithm carries out matrix factorization **locally** it synthesizes one column at a time.
- When *n* is fixed, both AGR and householder algorithms have the same worst-case gate complexity linear in *k*.

The Global Synthesis Algorithm

- The AGR algorithm carries out matrix factorization **locally** it synthesizes one column at a time.
- When *n* is fixed, both AGR and householder algorithms have the same worst-case gate complexity linear in *k*.
- Next, we will take a **global** view of each matrix. This results in a **smaller** gate count in practice.

- The AGR algorithm carries out matrix factorization **locally** it synthesizes one column at a time.
- When *n* is fixed, both AGR and householder algorithms have the same worst-case gate complexity linear in *k*.
- Next, we will take a **global** view of each matrix. This results in a **smaller** gate count in practice.

 $O(n^2k) \Longrightarrow O(k)$

- The AGR algorithm carries out matrix factorization **locally** it synthesizes one column at a time.
- When *n* is fixed, both AGR and householder algorithms have the same worst-case gate complexity linear in *k*.
- Next, we will take a **global** view of each matrix. This results in a **smaller** gate count in practice.

 $O(n^2k) \Longrightarrow O(k)$

Define a global synthesis method for U ∈ L₈, then leverage this to find a global synthesis method for U' ∈ O₈.

 $U \in \mathcal{L}_8$. Write $U = \frac{1}{\sqrt{2}^k} M$ with k minimal. There exists $\overrightarrow{G_1}, \dots, \overrightarrow{G_k}$ over \mathcal{F} , such that $\frac{1}{\sqrt{2}^k} M \xrightarrow{\overrightarrow{G_1}} \frac{1}{\sqrt{2}^{k-1}} M' \xrightarrow{\overrightarrow{G_2}} \frac{1}{\sqrt{2}^{k-2}} M'' \xrightarrow{\overrightarrow{G_3}} \dots \xrightarrow{\overrightarrow{G_k}} \mathbb{I}.$ Therefore.

$$\overrightarrow{G_k} \cdots \overrightarrow{G_1} U = \mathbb{I} \implies U = \overrightarrow{G_1}^{-1} \cdots \overrightarrow{G_k}^{-1}.$$

Binary Pattern

Let $U \in \mathcal{L}_n$. Write $U = \frac{1}{\sqrt{2}^k} M$ with k minimal. The residue mod 2 of M is called the **binary pattern** of U, denoted as \overline{U} .

Example: $U \in \mathcal{L}_5$

$$U = \frac{1}{\sqrt{2}^4} \begin{bmatrix} 3 & 1 & -1 & 1 & 2\\ 1 & 3 & 1 & -1 & -2\\ -1 & 1 & 3 & 1 & 2\\ 1 & -1 & 1 & 3 & -2\\ -2 & 2 & -2 & 2 & 0 \end{bmatrix} \rightarrow \overline{U} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0\\ 1 & 1 & 1 & 1 & 0\\ 1 & 1 & 1 & 1 & 0\\ 1 & 1 & 1 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Weight Lemma

Let $U \in \mathcal{L}_n$ and $\operatorname{lde}_{\sqrt{2}}(U) = k \ge 2$. Let u be an arbitrary column vector in \overline{U} . Then

 $|\{u_i; u_i = 1, 1 \le i \le n\}| \equiv 0(4).$

In other words, in each column of \overline{U} , the 1's occur in quadruples.

Weight Lemma

Let $U \in \mathcal{L}_n$ and $\operatorname{lde}_{\sqrt{2}}(U) = k \ge 2$. Let u be an arbitrary column vector in \overline{U} . Then

 $|\{u_i; u_i = 1, 1 \le i \le n\}| \equiv 0(4).$

In other words, in each column of \overline{U} , the 1's occur in quadruples.

Proof. Let v be a column vector in U and $\mathbf{v} = \frac{1}{\sqrt{2}^k} \mathbf{w}$, where $\mathbf{w} \in \mathbb{Z}^n$. Since $\langle \mathbf{v}, \mathbf{v} \rangle = 1$, $\langle \mathbf{w}, \mathbf{w} \rangle = 2^k$ and thus $\sum w_i^2 = 2^k$. When $k \ge 2$, $\sum w_i^2 \equiv 0(4)$. Note that

$$w_i^2 \equiv 1(4) \iff w_i \equiv 1(2), \quad w_i^2 \equiv 0(4) \iff w_i \equiv 0(2).$$

Hence the number of odd entries in w is a multiple of 4.

П

Intuition: The 1's in any two distinct columns of \overline{U} collide evenly many times.

Collision Lemma

Let $U \in \mathcal{L}_n$ and $\operatorname{lde}_{\sqrt{2}}(U) = k > 0$. Any two distinct columns in \overline{U} must have evenly many 1's in common.

Example: Evenly many collisions

Example: Oddly many collisions

$$u_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, u_4 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Intuition: The 1's in any two distinct columns of \overline{U} collide evenly many times.

Collision Lemma

Let $U \in \mathcal{L}_n$ and $\operatorname{lde}_{\sqrt{2}}(U) = k > 0$. Any two distinct columns in \overline{U} must have evenly many 1's in common.

Example: Evenly many collisions

$$u_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, u_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Example: Oddly many collisions

$$u_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, u_4 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Theorem

There exists a set \mathcal{P} of 14 binary patterns such that if $U \in \mathcal{L}_8$ and $lde(U) \ge 2$, then $\overline{U} \in \mathcal{P}$ (up to row and column permutations, as well as taking transpose).

Proof. By a long case distinction using the Weight and Collision Lemmas.

Binary patterns that are "nice".

Binary patterns that are "not nice".

Binary patterns that are "nice".

Binary patterns that are "not nice".

Binary patterns that are "nice".

Binary patterns that are "not nice".

	1	1	1	1	1	1	1	1		1	1	1	1	0	0	0	0		1	1	1	1	0	0	0	0]	
<i>L</i> =	1	1	1	1	0	0	0	0		1 1	1	0	0	1	1	0	0		1	1	0	0	1	1	0	0	
	1	1	0	0	1	1	0	0			0	1	0	1	0	1	0		1	0	1	0	1	0	1	0	
	1	1	0	0	0	0	1	1	M –	1	0	0	1	0	1	1	0	N -	1	0	0	1	0	1	1	0	
	1	0	1	0	1	0	1	0 '	<i>IVI</i> –	$\begin{bmatrix} \mathbf{M} & - \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	1	$\begin{array}{c} 1 \\ 0 \end{array}$	$0 \\ 1$	$\begin{array}{c} 1 \\ 0 \end{array}$	$0 \\ 1$	0 0	$\begin{array}{c}1\\1\end{array}$, <i>I</i> v –	0	1	1	0	0	1	1	0	
	1	0	1	0	0	1	0	1			1								0	1	0	1	1	0	1	0	
	1	0	0	1	1	0	0	1			$\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}$	0	1	1	0	0	1	1		0	0	1	1	1	1	0	0
	1	0	0	1	0	1	1	0				0	0 0	0	0	0	1	1	1	1		0	0	0	0	0	0

A matrix $\overline{U} \in \mathbb{Z}_2^{8 \times 8}$ is *row-paired* if identical rows occur evenly many times.

Definition A matrix $\overline{U} \in \mathbb{Z}_2^{8 \times 8}$ is **column-paired** if identical columns occur evenly many times.

Remark: We demonstrate an example and a counterexample when n = 4.

Example: Row-paired and column-paired

$$\overline{U} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\overline{V} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

A matrix $\overline{U} \in \mathbb{Z}_2^{8 \times 8}$ is *row-paired* if identical rows occur evenly many times.

Definition A matrix $\overline{U} \in \mathbb{Z}_2^{8 \times 8}$ is **column-paired** if identical columns occur evenly many times.

Remark: We demonstrate an example and a counterexample when n = 4.

Example: Row-paired and column-paired

$$\overline{U} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\overline{V} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

A matrix $\overline{U} \in \mathbb{Z}_2^{8 \times 8}$ is *row-paired* if identical rows occur evenly many times.

Definition A matrix $\overline{U} \in \mathbb{Z}_2^{8 \times 8}$ is **column-paired** if identical columns occur evenly many times.

Remark: We demonstrate an example and a counterexample when n = 4.

Example: Row-paired and column-paired

$$\overline{U} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\overline{V} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

A matrix $\overline{U} \in \mathbb{Z}_2^{8 \times 8}$ is *row-paired* if identical rows occur evenly many times.

Definition A matrix $\overline{U} \in \mathbb{Z}_2^{8 \times 8}$ is **column-paired** if identical columns occur evenly many times.

Remark: We demonstrate an example and a counterexample when n = 4.

Example: Row-paired and column-paired

$$\overline{U} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\overline{V} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

A matrix $\overline{U} \in \mathbb{Z}_2^{8 \times 8}$ is *row-paired* if identical rows occur evenly many times.

Definition A matrix $\overline{U} \in \mathbb{Z}_2^{8 \times 8}$ is **column-paired** if identical columns occur evenly many times.

Remark: We demonstrate an example and a counterexample when n = 4.

Example: Row-paired and column-paired

$$\overline{U} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\overline{V} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Theorem (Row-paired Reduction)

If $U \in \mathcal{L}_8$ and \overline{U} is row-paired, then there exists $P \in S_8$ such that $\operatorname{lde}_{\sqrt{2}}(((I \otimes H) P)U) < \operatorname{lde}_{\sqrt{2}}(U).$

Theorem (Column-paired Reduction)

If $U \in \mathcal{L}_8$ and \overline{U} is column-paired, then there exists $P \in S_8$ such that $\operatorname{lde}_{\sqrt{2}}(U(P(I \otimes H))) < \operatorname{lde}_{\sqrt{2}}(U)$.

Remark: Below we sketch the proof for the Row-paired Reduction using a 6×6 matrix as an example.

Proof. Consider $U \in \mathcal{L}_6$ with $lde_{\sqrt{2}}(U) = k$. Since \overline{U} is row-paired, there exists $P \in S_6$ such that

$$PU = \frac{1}{\sqrt{2}^{k}} \begin{bmatrix} r_{1} \\ r_{2} \\ \vdots \\ r_{6} \end{bmatrix}, \text{ where } r_{1} \equiv r_{2}(2), r_{3} \equiv r_{4}(2), r_{5} \equiv r_{6}(2). \text{ Now}$$
$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \text{ and } I \otimes H = \begin{bmatrix} H & 0 & 0 \\ \hline 0 & H & 0 \\ \hline 0 & 0 & H \end{bmatrix}. \text{ Therefore,}$$
$$(I \otimes H) PU = \frac{1}{\sqrt{2}^{k+1}} \begin{bmatrix} r_{1} + r_{2} \\ r_{1} - r_{2} \\ r_{3} + r_{4} \\ r_{5} + r_{6} \\ r_{5} - r_{6} \end{bmatrix} = \frac{2}{\sqrt{2}^{k+1}} \begin{bmatrix} r_{1}' \\ \vdots \\ r_{6}' \end{bmatrix} = \frac{1}{\sqrt{2}^{k-1}} \begin{bmatrix} r_{1}' \\ \vdots \\ r_{6}' \end{bmatrix}, \text{ where } r_{1}', \dots, r_{6}' \in \mathbb{Z}^{1 \times 6}.$$

Hence $\operatorname{lde}_{\sqrt{2}}(((I \otimes H) P)U) < \operatorname{lde}_{\sqrt{2}}(U)$, for some $P \in S_6$.

Theorem

Consider $U \in \mathcal{L}_8$ and \overline{U} is neither row-paired nor column-paired. Let $U' = (I \otimes H) U (I \otimes H)$. Then $\overline{U'}$ is row-paired and $\operatorname{lde}_{\sqrt{2}}(U') \leq \operatorname{lde}_{\sqrt{2}}(U)$.

Proof. By direct computation.

Global Synthesis for \mathcal{L}_8

Theorem

Let $U \in \mathcal{L}_8$ and $\operatorname{lde}_{\sqrt{2}}(U) = k$. Then there exists C over \mathcal{F} such that [[C]] = U and the length of C is O(k).

Proof. Let $U \in \mathcal{L}_8$, proceed by induction on k.

- $k \leq 1$, there exists C composed of $(-1)_{[\alpha]}, X_{[\alpha,\beta]}$ and $I \otimes H$ such that [[C]] = U and the length of C is O(1).
- $k \ge 2$, \overline{U} must be one of the 14 binary patterns.
 - * If \overline{U} is nice, then $lde((I \otimes H) PU) \leq k 1$ and proceed recursively with $(I \otimes H) PU$.
 - * If \overline{U} is not nice, then $(I \otimes H) U (I \otimes H)$ is nice so lde $((I \otimes H) P (I \otimes H) U (I \otimes H)) \le k 1$ and proceed recursively with $(I \otimes H) P (I \otimes H) U (I \otimes H)$.

Generator Relations for \mathcal{L}_8 and \mathcal{O}_8^3

- \mathcal{L}_8 is generated by $\mathcal{F} = \left\{ (-1)_{[\alpha]}, X_{[\alpha,\beta]}, K_{[\alpha,\beta,\gamma,\delta]}, I \otimes H : 1 \le \alpha < \beta < \gamma < \delta \le 8 \right\}.$
- O_8 is generated by $\mathcal{G} = \{(-1)_{[\alpha]}, X_{[\alpha,\beta]}, K_{[\alpha,\beta,\gamma,\delta]} : 1 \le \alpha < \beta < \gamma < \delta \le 8\}.$

$$(I \otimes H)(I \otimes H) = \epsilon \tag{1}$$

$$(I \otimes H)(-1)_{[1]} = (-1)_{[1]} X_{[1,2]}(-1)_{[1]} (I \otimes H)$$
⁽²⁾

$$(I \otimes H)X_{[a,a+1]} = (-1)^{a+1}_{[a+1]}X^a_{[a,a+1]}K^a_{[a-1,a,a+1,a+2]}(I \otimes H)$$

$$(3)$$

$$(I \otimes H)K_{[1,2,3,4]} = K_{[1,2,3,4]}(I \otimes H)$$
(4)

Intuition: Commuting $I \otimes H$ with an element in \mathcal{G} adds O(1) gates.

³Sarah Meng Li, Neil J Ross, and Peter Selinger (2021). "Generators and relations for the group O_n ($\mathbb{Z}[1/2]$)". In: *arXiv* preprint *arXiv*:2106.01175.

Lemma

For any *M* over *G*, there exists *M'* over *G* such that $(I \otimes H) M = M' (I \otimes H)$. Moreover, if *M* has length O(m), then *M'* has length O(m).

Example:

$$\begin{aligned} (I \otimes H) K_{[1,2,3,4]}(-1)_{[1]} X_{[1,2]}(I \otimes H) &= K_{[1,2,3,4]}(I \otimes H)(-1)_{[1]} X_{[1,2]}(I \otimes H) \\ &= K_{[1,2,3,4]}(-1)_{[1]} X_{[1,2]}(-1)_{[1]}(I \otimes H) X_{[1,2]}(I \otimes H) \\ &= K_{[1,2,3,4]}(-1)_{[1]} X_{[1,2]}(-1)_{[1]}(-1)_{[2]}(I \otimes H)(I \otimes H) \\ &= K_{[1,2,3,4]}(-1)_{[1]} X_{[1,2]}(-1)_{[1]}(-1)_{[2]}. \end{aligned}$$

Theorem

Let $U \in O_8$ and $lde(U) = k \ge 1$. Then there exists C over \mathcal{G} such that [[C]] = U and the length of C is O(k).

Proof. Let $U \in O_8$ and lde(U) = k. Then $U \in \mathcal{L}_8$ with $lde_{\sqrt{2}}(U) = 2k$. Using the global synthesis for \mathcal{L}_8 , we can express U as a word W over \mathcal{F} with evenly many occurrences of $I \otimes H$, and the length of W is O(k). Consider any subword W_i of the form

 $(I\otimes H) C (I\otimes H),$

where C does not contain $I \otimes H$.

Theorem

Consider $U \in O_8$ and $lde(U) = k \ge 1$. Then there exists C over \mathcal{G} such that [[C]] = U and the length of C is O(k).

Proof Continued. Suppose the length of W_i is O(k). Then

$$W_i = (I \otimes H) C (I \otimes H) \longrightarrow C' (I \otimes H) (I \otimes H) \longrightarrow C'$$

Wi can be rewritten as a word *C'* over \mathcal{G} of length at most 3 * O(k) generators. Hence we can rewrite *W* as a word *W'* over \mathcal{G} of length no more than 3 * O(k).
• **Benchmark** our global synthesis algorithm with other state-of-the-art algorithms to compare their performance in practice.

- **Benchmark** our global synthesis algorithm with other state-of-the-art algorithms to compare their performance in practice.
- **Design** a standalone global synthesis for O_8 , rather than relying on the corresponding result for \mathcal{L}_8 and the commutation of generators.

- **Benchmark** our global synthesis algorithm with other state-of-the-art algorithms to compare their performance in practice.
- **Design** a standalone global synthesis for O_8 , rather than relying on the corresponding result for \mathcal{L}_8 and the commutation of generators.
- **Extend** the global synthesis to arbitrary dimensions: O_n and \mathcal{L}_n .

- **Benchmark** our global synthesis algorithm with other state-of-the-art algorithms to compare their performance in practice.
- **Design** a standalone global synthesis for O_8 , rather than relying on the corresponding result for \mathcal{L}_8 and the commutation of generators.
- **Extend** the global synthesis to arbitrary dimensions: O_n and \mathcal{L}_n .
- **Present** the global synthesis results of O_n and \mathcal{L}_n in terms of the restricted Clifford+T circuits over $\{X, CX, CCX, K\}$ and $\{X, CX, CCX, H\}$ respectively.

Thank you!