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The Group On(Z[1/2])

• Z[ 1
2
] =

{
u
2q
|u ∈ Z, q ∈ N

}
is the ring of dyadic fractions.

• On(Z[1/2]) is the group of orthogonal matrices over Z[ 1
2
], namely, the group of

orthogonal dyadic matrices.

• It consists of n-dimensional matrices of the form 1
2k
M . For example,

U =
1

22


3 1 −1 1 2
1 3 1 −1 −2
−1 1 3 1 2
1 −1 1 3 −2
−2 2 −2 2 0

 ∈ O5(Z[1/2]).
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The Group Un(Z[1/2, i ])

• Z[ 1
2
, i ] =

{
r + si |r , s ∈ Z[ 1

2
]
}

is a subring of C, where an element has dyadic
fractional real and imaginary part.

• Un(Z[ 1
2
, i ]) is the group of unitary matrices with entries from Z[ 1

2
, i ].

• It consists of n-dimensional matrices of the form 1
2k
N . For example,

M =
1

22

 −2i −1− 3i 1− i
−2i −1 + i 1 + 3i

2− 2i 2i −2i

 ∈ U3(Z[
1

2
, i ]).
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The Circuit-Matrix Correspondence

Theorems (Amy, Glaudell, and Ross, 2020)

(a) A unitary M can be exactly represented by a circuit over {X ,CX ,CCX ,H ⊗ H} if
and only if M ∈ On(Z[1/2]).

(b) A unitary U can be exactly represented by a circuit over {X ,CX ,CCX , ω†H , S} if
and only if U ∈ Un(Z[1/2, i ]).

• Restricted Clifford+T circuits correspond to a group of matrices.

• Studying matrix groups is a way to study quantum circuits.
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Constructive Membership Problem (CMP)

Let G be a group of matrices with entries over some ring, and S = {s1, . . . , sq} a set of
generators for G. Let U ∈ G, find a sequence of generators s1, . . . , s` such that

U = s1 · . . . · s`.

• The smaller the `, the better the solution.

• A solution is optimal if the sequence is a shortest possible sequence.

• An algorithm to solve the CMP is called an exact synthesis algorithm.
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Motivation

• Restricted Clifford+T circuits play an important role in many quantum algorithms.

• A good solution to CMP yields shorter quantum circuits.

• Can we find a good solution to the CMP for On(Z[1/2]) and Un(Z[1/2, i ])?
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Basic Matrices in On(Z[1/2])

X =

[
0 1
1 0

]
, (−1) = [−1],

K = H ⊗ H =
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 , where H =
1√
2

[
1 1
1 −1

]
.
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Basic Matrices in Un(Z[1
2, i ])

X =

[
0 1
1 0

]
, (i) = [i ],

ω†H =
ω†√

2

[
1 1
1 −1

]
=

1

2

[
1− i 1− i
1− i −1 + i

]
, where ω =

1 + i√
2

.
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Two-level Operators

Definition

Let U =

[
x1,1 x1,2

x2,1 x2,2

]
. The action of U[α,β], 1 ≤ α < β ≤ n, is defined as

U[α,β]v = w , where


[
wα
wβ

]
= U

[
vα
vβ

]
,

wi = vi , i /∈ {α, β}.

Let X =

[
0 1
1 0

]
. Then X[2,4] =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 and X[2,4]


v1

v2

v3

v4

 =


v1

v4

v3

v2

 .
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Four-level Operators

Create a four-level operator by embedding a 4× 4 matrix U into an n× n identity matrix.

Let K =
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 . Then K[1,2,4,5] =


1/2 1/2 0 1/2 1/2
1/2 −1/2 0 1/2 −1/2

0 0 1 0 0
1/2 1/2 0 −1/2 −1/2
1/2 −1/2 0 −1/2 1/2

 .

K[1,2,4,5]


v1

v2

v3

v4

v5

 =


(v1 + v2 + v4 + v5)/2
(v1 − v2 + v4 − v5)/2

v3

(v1 + v2 − v4 − v5)/2
(v1 − v2 − v4 + v5)/2

 .
9/28



Generators for On(Z[1/2])

Let G =
{

(−1)[α],X[α,β],K[α,β,γ,δ] : 1 ≤ α < β < γ < δ ≤ n
}
. Then G is a generating

set for On(Z[1/2]):

Theorem (Amy et al., 2020)

Let M be a unitary n× n matrix. Then M ∈ On(Z[1/2]) if and only if M can be written
as a product of elements of G.

Proof

(⇐) G ⊆ On(Z[1/2]) and On(Z[1/2]) is closed under multiplication.

(⇒) For every M ∈ On(Z[1/2]), construct a sequence of generators representing M .
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The Exact Synthesis Algorithm
• The algorithm proceeds one column at a time, reducing each column to a

corresponding basis vector.

• While outputting a word
−→
G` after each iteration, the algorithm recursively acts on

the input matrix until it is reduced to the identity matrix I.

M
−→
G1−→


0

M ′
...
0

0 · · · 0 1

 −→
G2−→


0 0

M ′′
...

...
0 0

0 · · · 0 1 0
0 · · · 0 0 1


−→
G3−→ · · ·

−→
G`−→ I

−→
G` · · · · ·

−→
G1M = I⇒ M =

−→
G1
−1 · · · · ·

−→
G`
−1
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The Least Denominator Exponent (LDE)

Let t ∈ Z[ 1
2
]. t = a

2k
, where a ∈ Z and k ∈ N. k is a denominator exponent of t. The

minimal such k is called the least denominator exponent of t, written lde(t).

v =
1

27



54
62
98
2
2
2
2
2


=

2

27



27
31
49
1
1
1
1
1


=

1

26



27
31
49
1
1
1
1
1


lde(v) = 6

U =
1

2


−1 1 1 0 1 0
−1 −1 0 1 0 1
−1 1 −1 0 −1 0
−1 −1 0 −1 0 −1
0 0 1 1 −1 −1
0 0 1 −1 −1 1


lde(U) = 1
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Lemma (Base Case)

Let v ∈ Z[ 1
2
]n be a unit vector. Let k = lde(v). If k = 0, then v = ±ej for some

j ∈ {1, . . . , n}.

Lemma (Count)

Let v ∈ Z[ 1
2
]n be a unit vector, and lde(v) = k > 0. Let w = 2kv . Then the number of

odd entries in w is a multiple of 4.

Lemma (Parity Reduction)

Let u1, u2, u3, u4 be odd integers. Then there exist τ1, τ2, τ3, τ4 ∈ Z2 such that

K[1,2,3,4](−1)τ1

[1](−1)τ2

[2](−1)τ3

[3](−1)τ4

[4]


u1

u2

u3

u4

 =


u′1
u′2
u′3
u′4

 , u′1, u
′
2, u
′
3, u
′
4 are even integers.
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Input: v ∈ Z[ 1
2
]8 Output: G1,G2,G3 Result: G3 · G2 · G1 · v = e1

v :
1

4



−1
1
−1
−1
3
1
1
1


lde(v) = 2

G1=K[1,2,3,4](−1)[4](−1)[3](−1)[1]−−−−−−−−−−−−−−−−−−−→ v ′ :
1

4



2
0
0
0
3
1
1
1


lde(v ′) = 2

G2=K[5,6,7,8](−1)[5]−−−−−−−−−−−→

v ′′ :
1

4



2
0
0
0
0
−2
−2
−2


=

1

2



1
0
0
0
0
−1
−1
−1


lde(v ′′) = 1

G3=K[1,6,7,8](−1)[8](−1)[7](−1)[6]−−−−−−−−−−−−−−−−−−−→ v ′′′ :
1

2



2
0
0
0
0
0
0
0


=



1
0
0
0
0
0
0
0


= e1

lde(v ′′′) = 0

.
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Cayley Graph of On(Z[1/2])

s0 s1

s2

s3s4

s5 E

F

G Vertex := group element (aka,
operators, matrices, states).

Edge := a generator.

Cycle := relation.
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Normal Form

The exact synthesis algorithm gives a canonical path from each group element to I.

s0 s1

s2

s3s4

s5

I
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Semantic Equivalence

• A word is a sequence of generators. We write
−→
G for Gq . . .G1.

• Each operator has a unique normal form, which is the word output by the exact
synthesis algorithm.

• The interpretation of
−→
G is J

−→
G K = Gq · . . . · G1.

Definition

Two words
−→
G and

−→
F are semantically equivalent, written

−→
G ∼

−→
F , if J

−→
G K = J

−→
F K.

17/28



Motivation

• Let C1 and C2 be two words where C1 = X[1,2]X[3,4]X[1,2] and C2 = X[3,4].

• To see if C1 ∼ C2, we can check by direct computation or by simplifying C1.

C1 = X[1,2]X[3,4]X[1,2] ∼ X[1,2]X[1,2]X[3,4] ∼ IX[3,4] ∼ X[3,4] = C2.
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Syntactic Equivalence

Definition

Two words
−→
G and

−→
F are syntactically equivalent, written

−→
G ≈

−→
F , where ≈ is the

smallest congruence relation on words containing R1, . . . ,Rk and such that

−→
G ≈

−→
G ′,
−→
F ≈

−→
F ′ ⇒

−→
G
−→
F ≈

−→
G ′
−→
F ′.

Question: Can we use syntactic and semantic relations interchangeably?
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Soundness and Completeness

Theorem (Analogous to Greylyn’s Theorem, 2014)

Let
−→
G and

−→
F be words over G of On(Z[1/2]), then

−→
G ≈

−→
F ⇐⇒

−→
G ∼

−→
F .

Proof.

(⇒) Soundness: By matrix multiplication.

(⇐) Completeness: Use induction to leverage finitely many syntactic relations such
that an arbitrary path can be rewritten into its equivalent canonical path.

20/28



Theorem (Completeness)

−→
G ∼

−→
F ⇒

−→
G ≈

−→
F

Proof Idea. If two words are semantically equivalent, they corresponds to the same
normal form. If we can reduce an arbitrary path to its normal form using syntactic
relations, this implies completeness.

I

s

−→
G

−→
F

−→
M

I

s−→
G ≈

−→
M
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Proof of Completeness

Lemma 1

Let s
−→
G−→ I be any sequence of simple edges with final state I, and let s

−→
M
=⇒ I be the

unique sequence of normal edges from s to I . Then
−→
G ≈

−→
M .

Proof Idea. Proceed by induction on the length of
−→
G .

I s

−→
M

−→
G
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Lemma 1

Let s
−→
G−→ I be any sequence of simple edges with final state I, and let s

−→
M
=⇒ I be the

unique sequence of normal edges from s to I . Then
−→
G ≈

−→
M .

I

s

r

−→
M

−→
G ′

G

−→
N

Induction Step
IH
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Lemma 2

Let s
G−→ r be a simple edge. Let s

−→
N

=⇒ I be the unique sequence of normal edges from s

to I , r
−→
M
=⇒ I be the unique sequence of normal edges from r to I . Then

−→
MG ≈

−→
N .

Proof Idea. Proceed by induction on the level of s.

I

s

r

−→
N

−→
M

G
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Lemma 2

Let s
G−→ r be a simple edge. Let s

−→
N

=⇒ I be the unique sequence of normal edges from s

to I , r
−→
M
=⇒ I be the unique sequence of normal edges from r to I . Then

−→
MG ≈

−→
N .

I

st0

tk r

−→
N0 N

−→
N ′

−→
Nk

G
−→
G ′
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Lemma 2

Let s
G−→ r be a simple edge. Let s

−→
N

=⇒ I be the unique sequence of normal edges from s

to I , r
−→
M
=⇒ I be the unique sequence of normal edges from r to I . Then

−→
MG ≈

−→
N .

I

st0

tk r

t1

tk−1

−→
N0

N

−→
N ′

−→
Nk

−→
N1

−−→
Nk−1

... IH

IH

Main Lemma

IH

G

G1

Gk
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Main Lemma

Let s, t, and r be states, N : s ⇒ t be a normal edge, and G : s → r be a simple edge.

Then there exists a state q, a sequence of normal edges
−→
N ′ : r ⇒ q and a sequence of

simple edges
−→
G ′ : t → q such that the diagram

s r

t q

G

−→
G ′

N
−→
N ′

commutes syntactically and level(
−→
G ′ : t → q) < level(s).

Proof Idea. Since t and N are uniquely determined by s, and r is uniquely determined by
G , it suffices to distinguish cases based on the pair (s, G).
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Relations for On(Z[1/2])

X 2
[a,b] ≈ ε (1a)

(−1)2
[a] ≈ ε (1b)

K 2
[a,b,c,d ] ≈ ε (1c)

X[a,b]X[c,d ] ≈ X[c,d ]X[a,b] (2a)

X[a,b](−1)[c] ≈ (−1)[c]X[a,b] (2b)

X[a,b]K[c,d,e,f ] ≈ K[c,d,e,f ]X[a,b] (2c)

(−1)[a](−1)[b] ≈ (−1)[b](−1)[a] (2d)

(−1)[a]K[b,c,d,e] ≈ K[b,c,d,e](−1)[a] (2e)

K[a,b,c,d ]K[e,f ,g,h] ≈ K[e,f ,g,h]K[a,b,c,d ] (2f)

X[a,a′ ]X[a,b] ≈ X[a′,b]X[a,a′ ] (3a)

X[b,b′ ]X[a,b] ≈ X[a,b′ ]X[b,b′ ] (3b)

X[a,b](−1)[b] ≈ (−1)[a]X[a,b] (3c)

X[a,a′ ]K[a,b,c,d ] ≈ K[a′,b,c,d ]X[a,a′ ] (3d)

X[b,b′ ]K[a,b,c,d ] ≈ K[a,b′,c,d ]X[b,b′ ] (3e)

X[c,c′ ]K[a,b,c,d ] ≈ K[a,b,c′,d ]X[c,c′ ] (3f)

X[d,d′ ]K[a,b,c,d ] ≈ K[a,b,c,d′ ]X[d,d′ ] (3g)

X[c,d ]K[a,b,c,d ] ≈ K[a,b,c,d ]X[b,d ] (4a)

X[b,c]K[a,b,c,d ] ≈ (−1)[a]K[a,b,c,d ](−1)[a]K[a,b,c,d ](−1)[a] (4b)

X[a,b]K[a,b,c,d ] ≈ K[a,b,c,d ]X[b,d ](−1)[b](−1)[d ] (4c)

K[a,b,c,d ]K[b,d,e,f ] ≈ K[c,d,e,f ]K[a,b,c,e] (5a)

(−1)[a](−1)[e]X[a,e]K[e,f ,g,h]K[a,b,c,d ]X[d,e]K[a,b,c,d ]K[e,f ,g,h]X[a,e](−1)[a](−1)[e] ≈ K[e,f ,g,h]K[a,b,c,d ]X[d,e]K[a,b,c,d ]K[e,f ,g,h] (6a)

Remark: The indices are distinct and the relations are well-formed. For example, in Relation (5a), we have a < b < c < d < e < f .



Relations for Un(Z[12 , i ])

i4
[j] ≈ ε (1)

X 2
[j,k] ≈ ε (2)

K 8
[j,k] ≈ ε (3)

i[j]i[k] ≈ i[k]i[j] (4)

i[j]X[k,`] ≈ X[k,`]i[j] (5)

i[j]K[k,`] ≈ K[k,`]i[j] (6)

X[j,k]X[`,m] ≈ X[`,m]X[j,k] (7)

X[j,k]K[`,m] ≈ K[`,m]X[j,k] (8)

K[j,k]K[`,m] ≈ K[`,m]K[j,k] (9)

i[k]X[j,k] ≈ X[j,k]i[j] (10)

X[k,`]X[j,k] ≈ X[j,k]X[j,`] (11)

X[j,`]X[k,`] ≈ X[k,`]X[j,k] (12)

K[k,`]X[j,k] ≈ X[j,k]K[j,`] (13)

K[j,`]X[k,`] ≈ X[k,`]K[j,k] (14)

K[j,k]i
2
[k] ≈ X[j,k]K[j,k] (15)

K[j,k]i
3
[k] ≈ i[k]K[j,k]i[k]K[j,k] (16)

K[j,k]i[j]i[k] ≈ i[j]i[k]K[j,k] (17)

K 2
[j,k]i[j]i[k] ≈ ε (18)

K[j,k]K[`,m]K[j,`]K[k,m] ≈ K[j,`]K[k,m]K[j,k]K[`,m] (19)

Remark: We redefine K to be ω†H.



Future Work

• Improve the complexity of the exact synthesis algorithm.

• Investigate restricted Clifford+T circuit relations.

• Find a minimal set of syntactic relations for On(Z[1/2]) and Un(Z[1/2, i ]).

• Find syntactic relations for other restricted Clifford+T matrix groups such as the
imaginary Clifford+T circuits.
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Thank you!


