# Generators and Relations for $\mathrm{O}_{n}(\mathbb{Z}[1 / 2])$ and $\mathrm{U}_{n}(\mathbb{Z}[1 / 2, i])$ 

Xiaoning Bian, Sarah Meng Li, Neil J. Ross, and Peter Selinger

Department of Mathematics and Statistics Dalhousie University, Halifax, Canada

## The Group $\mathrm{O}_{n}(\mathbb{Z}[1 / 2])$

- $\mathbb{Z}\left[\frac{1}{2}\right]=\left\{\left.\frac{u}{2 q} \right\rvert\, u \in \mathbb{Z}, q \in \mathbb{N}\right\}$ is the ring of dyadic fractions.
- $\mathrm{O}_{n}(\mathbb{Z}[1 / 2])$ is the group of orthogonal matrices over $\mathbb{Z}\left[\frac{1}{2}\right]$, namely, the group of orthogonal dyadic matrices.
- It consists of $n$-dimensional matrices of the form $\frac{1}{2^{k}} M$. For example,

$$
U=\frac{1}{2^{2}}\left[\begin{array}{ccccc}
3 & 1 & -1 & 1 & 2 \\
1 & 3 & 1 & -1 & -2 \\
-1 & 1 & 3 & 1 & 2 \\
1 & -1 & 1 & 3 & -2 \\
-2 & 2 & -2 & 2 & 0
\end{array}\right] \in \mathrm{O}_{5}(\mathbb{Z}[1 / 2]) .
$$

## The Group $\mathrm{U}_{n}(\mathbb{Z}[1 / 2, i])$

- $\mathbb{Z}\left[\frac{1}{2}, i\right]=\left\{r+s i \mid r, s \in \mathbb{Z}\left[\frac{1}{2}\right]\right\}$ is a subring of $\mathbb{C}$, where an element has dyadic fractional real and imaginary part.
- $U_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$ is the group of unitary matrices with entries from $\mathbb{Z}\left[\frac{1}{2}, i\right]$.
- It consists of $n$-dimensional matrices of the form $\frac{1}{2^{k}} N$. For example,

$$
M=\frac{1}{2^{2}}\left[\begin{array}{ccc}
-2 i & -1-3 i & 1-i \\
-2 i & -1+i & 1+3 i \\
2-2 i & 2 i & -2 i
\end{array}\right] \in U_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) .
$$

## The Circuit-Matrix Correspondence

## Theorems (Amy, Glaudell, and Ross, 2020)

(a) A unitary $M$ can be exactly represented by a circuit over $\{X, C X, C C X, H \otimes H\}$ if and only if $M \in \mathrm{O}_{n}(\mathbb{Z}[1 / 2])$.
(b) A unitary $U$ can be exactly represented by a circuit over $\left\{X, C X, C C X, \omega^{\dagger} H, S\right\}$ if and only if $U \in \mathrm{U}_{n}(\mathbb{Z}[1 / 2, i])$.

- Restricted Clifford+T circuits correspond to a group of matrices.
- Studying matrix groups is a way to study quantum circuits.


## Constructive Membership Problem (CMP)

Let $\mathcal{G}$ be a group of matrices with entries over some ring, and $\mathcal{S}=\left\{s_{1}, \ldots, s_{q}\right\}$ a set of generators for $\mathcal{G}$. Let $U \in \mathcal{G}$, find a sequence of generators $s_{1}, \ldots, s_{\ell}$ such that

$$
U=s_{1} \cdot \ldots \cdot s_{\ell}
$$

- The smaller the $\ell$, the better the solution.
- A solution is optimal if the sequence is a shortest possible sequence.
- An algorithm to solve the CMP is called an exact synthesis algorithm.


## Motivation

- Restricted Clifford+T circuits play an important role in many quantum algorithms.
- A good solution to CMP yields shorter quantum circuits.
- Can we find a good solution to the CMP for $\mathrm{O}_{n}(\mathbb{Z}[1 / 2])$ and $\mathrm{U}_{n}(\mathbb{Z}[1 / 2, i])$ ?


## Basic Matrices in $\mathrm{O}_{n}(\mathbb{Z}[1 / 2])$

$$
\begin{aligned}
& X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad(-1)=[-1], \\
& K=H \otimes H=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right] \text {, where } H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \text {. }
\end{aligned}
$$

## Basic Matrices in $U_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$

$$
\begin{gathered}
X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad(i)=[i], \\
\omega^{\dagger} H=\frac{\omega^{\dagger}}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
1-i & 1-i \\
1-i & -1+i
\end{array}\right], \text { where } \omega=\frac{1+i}{\sqrt{2}} .
\end{gathered}
$$

## Two-level Operators

## Definition

Let $U=\left[\begin{array}{ll}x_{1,1} & x_{1,2} \\ x_{2,1} & x_{2,2}\end{array}\right]$. The action of $U_{[\alpha, \beta]}, 1 \leq \alpha<\beta \leq n$, is defined as

$$
U_{[\alpha, \beta]} v=w, \text { where }\left\{\begin{array}{l}
{\left[\begin{array}{l}
w_{\alpha} \\
w_{\beta}
\end{array}\right]=U\left[\begin{array}{l}
v_{\alpha} \\
v_{\beta}
\end{array}\right],} \\
w_{i}=v_{i}, i \notin\{\alpha, \beta\} .
\end{array}\right.
$$

$$
\text { Let } X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \text {. Then } X_{[2,4]}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \text { and } X_{[2,4]}\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
v_{1} \\
v_{4} \\
v_{3} \\
v_{2}
\end{array}\right] \text {. }
$$

## Four-level Operators

Create a four-level operator by embedding a $4 \times 4$ matrix $U$ into an $n \times n$ identity matrix.

$$
\text { Let } \begin{array}{r}
K=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right] . \text { Then } K_{[1,2,4,5]}=\left[\begin{array}{ccccc}
1 / 2 & 1 / 2 & 0 & 1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2 & 0 & 1 / 2 & -1 / 2 \\
0 & 0 & 1 & 0 & 0 \\
1 / 2 & 1 / 2 & 0 & -1 / 2 & -1 / 2 \\
1 / 2 & -1 / 2 & 0 & -1 / 2 & 1 / 2
\end{array}\right] . \\
K_{[1,2,4,5]}\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{c}
\left(v_{1}+v_{2}+v_{4}+v_{5}\right) / 2 \\
\left(v_{1}-v_{2}+v_{4}-v_{5}\right) / 2 \\
v_{3} \\
\left(v_{1}+v_{2}-v_{4}-v_{5}\right) / 2 \\
\left(v_{1}-v_{2}-v_{4}+v_{5}\right) / 2
\end{array}\right] .
\end{array}
$$

## Generators for $\mathrm{O}_{n}(\mathbb{Z}[1 / 2])$

Let $\mathcal{G}=\left\{(-1)_{[\alpha]}, X_{[\alpha, \beta]}, K_{[\alpha, \beta, \gamma, \delta]}: 1 \leq \alpha<\beta<\gamma<\delta \leq n\right\}$. Then $\mathcal{G}$ is a generating set for $\mathrm{O}_{n}(\mathbb{Z}[1 / 2])$ :

## Theorem (Amy et al., 2020)

Let $M$ be a unitary $n \times n$ matrix. Then $M \in \mathrm{O}_{n}(\mathbb{Z}[1 / 2])$ if and only if $M$ can be written as a product of elements of $\mathcal{G}$.

## Proof

$(\Leftarrow) \mathcal{G} \subseteq \mathrm{O}_{n}(\mathbb{Z}[1 / 2])$ and $\mathrm{O}_{n}(\mathbb{Z}[1 / 2])$ is closed under multiplication.
$(\Rightarrow)$ For every $M \in O_{n}(\mathbb{Z}[1 / 2])$, construct a sequence of generators representing $M$.

## The Exact Synthesis Algorithm

- The algorithm proceeds one column at a time, reducing each column to a corresponding basis vector.
- While outputting a word $\vec{G}_{\ell}$ after each iteration, the algorithm recursively acts on the input matrix until it is reduced to the identity matrix $\mathbb{I}$.

$$
M \xrightarrow{\overrightarrow{G_{1}}}\left(\begin{array}{c|c|c} 
& M^{\prime} & \vdots \\
& & 0 \\
0 & \cdots & 0
\end{array}\right) \xrightarrow{\overrightarrow{G_{2}}}\left(\begin{array}{cccc} 
& M^{\prime \prime} & \vdots & \vdots \\
& & 0 & 0 \\
\hline 0 & \cdots & 0 & 1
\end{array}\right) \xrightarrow{\overrightarrow{G_{3}}} \cdots \xrightarrow{\overrightarrow{G_{e}}} \mathbb{I}
$$

$$
\overrightarrow{G_{\ell}} \cdots \cdot \overrightarrow{G_{1}} M=\mathbb{I} \Rightarrow M=\vec{G}_{1}^{-1} \ldots \cdot \vec{G}_{\ell}^{-1}
$$

## The Least Denominator Exponent (LDE)

Let $t \in \mathbb{Z}\left[\frac{1}{2}\right] . t=\frac{a}{2^{k}}$, where $a \in \mathbb{Z}$ and $k \in \mathbb{N}$. $k$ is a denominator exponent of $t$. The minimal such $k$ is called the least denominator exponent of $t$, written $\operatorname{lde}(t)$.

$$
v=\frac{1}{2^{7}}\left[\begin{array}{c}
54 \\
62 \\
98 \\
2 \\
2 \\
2 \\
2 \\
2
\end{array}\right]=\frac{2}{2^{7}}\left[\begin{array}{c}
27 \\
31 \\
49 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]=\frac{1}{2^{6}}\left[\begin{array}{c}
27 \\
31 \\
49 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right] \quad\left[\begin{array}{cccccc}
-1 & 1 & 1 & 0 & 1 & 0 \\
-1 & -1 & 0 & 1 & 0 & 1 \\
-1 & 1 & -1 & 0 & -1 & 0 \\
-1 & -1 & 0 & -1 & 0 & -1 \\
0 & 0 & 1 & 1 & -1 & -1 \\
0 & 0 & 1 & -1 & -1 & 1
\end{array}\right]
$$

## Lemma (Base Case)

Let $v \in \mathbb{Z}\left[\frac{1}{2}\right]^{n}$ be a unit vector. Let $k=\operatorname{Ide}(v)$. If $k=0$, then $v= \pm e_{j}$ for some $j \in\{1, \ldots, n\}$.

## Lemma (Count)

Let $v \in \mathbb{Z}\left[\frac{1}{2}\right]^{n}$ be a unit vector, and $\operatorname{Ide}(v)=k>0$. Let $w=2^{k} v$. Then the number of odd entries in $w$ is a multiple of 4 .

## Lemma (Parity Reduction)

Let $u_{1}, u_{2}, u_{3}, u_{4}$ be odd integers. Then there exist $\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4} \in \mathbb{Z}_{2}$ such that

$$
K_{[1,2,3,4]}(-1)_{[1]}^{\tau_{1}}(-1)_{[2]}^{\tau_{2}}(-1)_{[3]}^{\tau_{3}}(-1)_{[4]}^{\tau_{4}}\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right]=\left[\begin{array}{l}
u_{1}^{\prime} \\
u_{2}^{\prime} \\
u_{3}^{\prime} \\
u_{4}^{\prime}
\end{array}\right], u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, u_{4}^{\prime} \text { are even integers. }
$$

Input: $v \in \mathbb{Z}\left[\frac{1}{2}\right]^{8} \quad$ Output: $G_{1}, G_{2}, G_{3} \quad$ Result: $G_{3} \cdot G_{2} \cdot G_{1} \cdot v=e_{1}$

$$
\begin{aligned}
& \begin{aligned}
v^{\prime \prime}: \frac{1}{4}\left(\begin{array}{c}
2 \\
0 \\
0 \\
0 \\
0 \\
-2 \\
-2 \\
-2
\end{array}\right)=\frac{1}{2}\left(\begin{array}{c}
1 \\
0 \\
0 \\
0 \\
0 \\
-1 \\
-1 \\
-1
\end{array}\right) \xrightarrow{G_{3}=K_{[1,6,7,8]}(-1)_{[8]}(-1)_{[7]}(-1)_{[6]}} v^{\prime \prime \prime}: \frac{1}{2}\left(\begin{array}{l}
2 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)=e_{1} . \\
\operatorname{lde}\left(v^{\prime \prime}\right)=1
\end{aligned}
\end{aligned}
$$

## Cayley Graph of $\mathrm{O}_{n}(\mathbb{Z}[1 / 2])$



Vertex := group element (aka, operators, matrices, states).

Edge $:=$ a generator .
Cycle := relation.

## Normal Form

The exact synthesis algorithm gives a canonical path from each group element to $\mathbb{I}$.


## Semantic Equivalence

- A word is a sequence of generators. We write $\vec{G}$ for $G_{q} \ldots G_{1}$.
- Each operator has a unique normal form, which is the word output by the exact synthesis algorithm.
- The interpretation of $\vec{G}$ is $\llbracket \vec{G} \rrbracket=G_{q} \cdot \ldots \cdot G_{1}$.


## Definition

Two words $\vec{G}$ and $\vec{F}$ are semantically equivalent, written $\vec{G} \sim \vec{F}$, if $\llbracket \vec{G} \rrbracket=\llbracket \vec{F} \rrbracket$.

## Motivation

- Let $\mathcal{C}_{1}$ and $\mathcal{C}_{2}$ be two words where $\mathcal{C}_{1}=X_{[1,2]} X_{[3,4]} X_{[1,2]}$ and $\mathcal{C}_{2}=X_{[3,4]}$.
- To see if $\mathcal{C}_{1} \sim \mathcal{C}_{2}$, we can check by direct computation or by simplifying $\mathcal{C}_{1}$.

$$
\mathcal{C}_{1}=X_{[1,2]} X_{[3,4]} X_{[1,2]} \sim X_{[1,2]} X_{[1,2]} X_{[3,4]} \sim \mathbb{I} X_{[3,4]} \sim X_{[3,4]}=\mathcal{C}_{2} .
$$

## Syntactic Equivalence

## Definition

Two words $\vec{G}$ and $\vec{F}$ are syntactically equivalent, written $\vec{G} \approx \vec{F}$, where $\approx$ is the smallest congruence relation on words containing $R_{1}, \ldots, R_{k}$ and such that

$$
\vec{G} \approx \overrightarrow{G^{\prime}}, \vec{F} \approx \overrightarrow{F^{\prime}} \Rightarrow \vec{G} \vec{F} \approx \overrightarrow{G^{\prime}} \overrightarrow{F^{\prime}} .
$$

Question: Can we use syntactic and semantic relations interchangeably?

## Soundness and Completeness

Theorem (Analogous to Greylyn's Theorem, 2014)
Let $\vec{G}$ and $\vec{F}$ be words over $\mathcal{G}$ of $\mathrm{O}_{n}(\mathbb{Z}[1 / 2])$, then

$$
\vec{G} \approx \vec{F} \Longleftrightarrow \vec{G} \sim \vec{F} .
$$

## Proof.

$(\Rightarrow)$ Soundness: By matrix multiplication.
$(\Leftarrow)$ Completeness: Use induction to leverage finitely many syntactic relations such that an arbitrary path can be rewritten into its equivalent canonical path.

## Theorem (Completeness)

$\vec{G} \sim \vec{F} \Rightarrow \vec{G} \approx \vec{F}$

Proof Idea. If two words are semantically equivalent, they corresponds to the same normal form. If we can reduce an arbitrary path to its normal form using syntactic relations, this implies completeness.


## Proof of Completeness

## Lemma 1

Let $s \stackrel{\vec{G}}{\longrightarrow} I$ be any sequence of simple edges with final state $I$, and let $s \stackrel{\vec{M}}{\Longrightarrow} I$ be the unique sequence of normal edges from $s$ to $I$. Then $\vec{G} \approx \vec{M}$.

Proof Idea. Proceed by induction on the length of $\vec{G}$.


## Lemma 1

Let $s \xrightarrow{\vec{G}} I$ be any sequence of simple edges with final state $I$, and let $s \stackrel{\vec{M}}{\Longrightarrow} I$ be the unique sequence of normal edges from $s$ to $I$. Then $\vec{G} \approx \vec{M}$.


## Lemma 2

Let $s \xrightarrow{G} r$ be a simple edge. Let $s \stackrel{\vec{N}}{\Longrightarrow}$ I be the unique sequence of normal edges from $s$ to $I, r \xlongequal{\vec{M}} I$ be the unique sequence of normal edges from $r$ to $I$. Then $\vec{M} G \approx \vec{N}$.

Proof Idea. Proceed by induction on the level of $s$.


## Lemma 2

Let $s \xrightarrow{G} r$ be a simple edge. Let $s \stackrel{\vec{N}}{\Longrightarrow} I$ be the unique sequence of normal edges from $s$ to $I, r \stackrel{\vec{M}}{\Longrightarrow} I$ be the unique sequence of normal edges from $r$ to $I$. Then $\vec{M} G \approx \vec{N}$.


## Lemma 2

Let $s \xrightarrow{G} r$ be a simple edge. Let $s \stackrel{\vec{N}}{\Longrightarrow} /$ be the unique sequence of normal edges from $s$ to $I, r \stackrel{\vec{M}}{\Longrightarrow} I$ be the unique sequence of normal edges from $r$ to $I$. Then $\vec{M} G \approx \vec{N}$.


## Main Lemma

Let $s, t$, and $r$ be states, $N: s \Rightarrow t$ be a normal edge, and $G: s \rightarrow r$ be a simple edge. Then there exists a state $q$, a sequence of normal edges $\overrightarrow{N^{\prime}}: r \Rightarrow q$ and a sequence of simple edges $\overrightarrow{G^{\prime}}: t \rightarrow q$ such that the diagram

commutes syntactically and level $\left(\overrightarrow{G^{\prime}}: t \rightarrow q\right)<\operatorname{level}(s)$.
Proof Idea. Since $t$ and $N$ are uniquely determined by $s$, and $r$ is uniquely determined by $G$, it suffices to distinguish cases based on the pair $(\mathrm{s}, \mathrm{G})$.

## Relations for $\mathrm{O}_{n}(\mathbb{Z}[1 / 2])$

$$
\begin{align*}
& X_{\left[a, a^{\prime}\right]} x_{[a, b]} \approx X_{\left[a^{\prime}, b\right]} X_{\left[a, a^{\prime}\right]}  \tag{3a}\\
& x_{\left[b, b^{\prime}\right]} x_{[a, b]} \approx x_{\left[a, b^{\prime}\right]} x_{\left[b, b^{\prime}\right]}  \tag{3b}\\
& x_{[a, b]}(-1)_{[b]} \approx(-1)_{[a]} x_{[a, b]}  \tag{3c}\\
& x_{\left[a, a^{\prime}\right]} K_{[a, b, c, d]} \approx K_{\left[a^{\prime}, b, c, d\right]} X_{\left[a, a^{\prime}\right]}  \tag{3d}\\
& X_{\left[b, b^{\prime}\right]} K_{[a, b, c, d]} \approx K_{\left[a, b^{\prime}, c, d\right]} X_{\left[b, b^{\prime}\right]}  \tag{3e}\\
& X_{\left[c, c^{\prime}\right]} K_{[a, b, c, d]} \approx K_{\left[a, b, c^{\prime}, d\right]} X_{\left[c, c^{\prime}\right]}  \tag{3f}\\
& x_{\left[d, d^{\prime}\right]} K_{[a, b, c, d]} \approx K_{\left[a, b, c, d^{\prime}\right]} x_{\left[d, d^{\prime}\right]}  \tag{3g}\\
& X_{[c, d]} K_{[a, b, c, d]} \approx K_{[a, b, c, d]} X_{[b, d]}  \tag{2c}\\
& X_{[b, c]} K_{[a, b, c, d]} \approx(-1)_{[a]} K_{[a, b, c, d]}(-1)_{[a]} K_{[a, b, c, d]}(-1)_{[a]}  \tag{2d}\\
& X_{[a, b]} K_{[a, b, c, d]} \approx K_{[a, b, c, d]} X_{[b, d]}(-1)_{[b]}(-1)_{[d]}  \tag{2e}\\
& K_{[a, b, c, d]} K_{[b, d, e, f]} \approx K_{[c, d, e, f]} K_{[a, b, c, e]}  \tag{2f}\\
& (-1)_{[a]}(-1)_{[[]]} X_{[a, e]} K_{[e, f, g, f]} K_{[a, b, c, d]} X_{[d, e]} K_{[a, b, c, d]} K_{[e, f, g, f]} X_{[a, e]]}(-1)_{[a]}(-1)_{[e]} \approx K_{[e, f, g, f]} K_{[a, b, c, d]} X_{[d, e]} K_{[a, b, c, d]} K_{[e, f, g, b]}
\end{align*}
$$

Remark: The indices are distinct and the relations are well-formed. For example, in Relation (5a), we have $a<b<c<d<e<f$.

## Relations for $U_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$

$$
\begin{align*}
i_{[j]}^{4} & \approx \varepsilon  \tag{1}\\
x_{[j, k]}^{2} & \approx \varepsilon  \tag{11}\\
K_{[j, k]}^{8} & \approx \varepsilon  \tag{12}\\
i_{[j]} i_{[k]} & \approx i_{\left[[] i_{j j]} i_{j}\right.}  \tag{14}\\
i_{[j]} x_{[k, \ell]} & \approx X_{[k, \ell]}{ }_{[j]}  \tag{15}\\
i_{[j]} K_{[k, \ell]} & \approx K_{[k, \ell]} i_{[j]}  \tag{16}\\
x_{[j, k]} x_{[\ell, m]} & \approx X_{[\ell, m]} x_{[j, k]}  \tag{17}\\
x_{[j, k]} K_{[\ell, m]} & \approx K_{[\ell, m]} x_{[j, k]}  \tag{18}\\
K_{[j, k]} K_{[\ell, m]} & \approx K_{[\ell, m]} K_{[j, k]}
\end{align*}
$$

$$
\begin{align*}
i_{[k]} x_{[j, k]} & \approx x_{[j, k]} i_{[j]}  \tag{10}\\
x_{[k, \ell]} x_{[j, k]} & \approx x_{[j, k]} x_{[j, \ell]} \\
x_{[j, \ell]} x_{[k, \ell]} & \approx x_{[k, \ell]} x_{[j, k]} \\
K_{[k, \ell]} x_{[j, k]} & \approx x_{[j, k]} k_{[j, \ell]} \\
K_{[j, \ell]} x_{[k, \ell]} & \approx x_{[k, \ell]} k_{[j, k]}
\end{align*}
$$

$$
\begin{align*}
\left.K_{[j, k]}\right]_{[k]}^{2} & \approx x_{[j, k]} K_{[j, k]} \\
\left.K_{[j, k]}^{3}\right]_{[k]}^{3} & \approx i_{[k]} K_{[j, k]}{ }_{[k]} K_{[j, k]} \\
K_{[j, k]}{ }_{[j]}^{i_{[k]}} & \approx i_{[j]}^{i_{[k]}} K_{[j, k]} \\
K_{[j, k]}^{2} i_{[j]}^{i_{[k]}} & \approx \varepsilon \\
K_{[j, k]} K_{[\ell, m]} K_{[j, e]} K_{[k, m]} & \approx K_{[j, \ell]} K_{[k, m]} K_{[j, k]} K_{[\ell, m]} \tag{19}
\end{align*}
$$

## Future Work

- Improve the complexity of the exact synthesis algorithm.
- Investigate restricted Clifford +T circuit relations.
- Find a minimal set of syntactic relations for $\mathrm{O}_{n}(\mathbb{Z}[1 / 2])$ and $\mathrm{U}_{n}(\mathbb{Z}[1 / 2, i])$.
- Find syntactic relations for other restricted Clifford+T matrix groups such as the imaginary Clifford+T circuits.

Thank you!

