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Abstract

We give a finite presentation by generators and relations for the group On(Z[1/2]) of n-
dimensional orthogonal matrices with entries in Z[1/2]. We then obtain a similar presentation
for the group of n-dimensional orthogonal matrices of the form M/

√
2k, where k is a nonnegative

integer and M is an integer matrix. Both groups arise in the study of quantum circuits. In
particular, when the dimension is a power of 2, the elements of the latter group are precisely
the unitary matrices that can be represented by a quantum circuit over the universal gate set
consisting of the Toffoli gate, the Hadamard gate, and the computational ancilla.

1 Introduction

There is a beautiful correspondence which relates certain quantum circuits and matrices over rings
of algebraic integers [3, 5, 6, 11, 13]. A first instance of this correspondence arises in the study
of circuits over the gate set {CCX,H ⊗ H}, where CCX is the Toffoli gate and H ⊗ H is the
twofold tensor product of the Hadamard gate. In this case, the correspondence takes a particularly
simple form: a unitary matrix M can be exactly represented by an n-qubit quantum circuit over
{CCX,H ⊗H} if and only if M ∈ On

(
Z
[
1
2

])
, where On

(
Z
[
1
2

])
is the group of orthogonal dyadic

matrices. A second instance of the correspondence follows as a corollary of this first one: circuits
over the gate set {CCX,H} correspond to orthogonal matrices of the form M/

√
2k, where M is

an integer matrix and k is a nonnegative integer. These matrices form the group of orthogonal
scaled dyadic matrices. The above gate sets are ubiquitous in the theory of quantum computation
[1, 4, 9, 17, 14].

The correspondence between quantum circuits and matrix groups exposes the mathematical
structure underlying certain gate sets, thereby enabling exact and efficient manipulation of circuits.
These insights, along with applications such as compiling [7, 10, 12, 15, 16] and verification [2],
motivate the study of the relevant matrix groups.

In this paper, we give a finite presentation by generators and relations for the group On

(
Z
[
1
2

])
,

following the approach initiated in [8]. It was shown in [3] that On

(
Z
[
1
2

])
is generated by the

collection of 1-, 2-, and 4-level operators of type −1, X, and H ⊗ H. To give a presentation of
On

(
Z
[
1
2

])
we introduce a finite list of relations among these generators and show that two words

over the generators denote the same element of On

(
Z
[
1
2

])
if and only if one word can be converted

into the other using a finite number of applications of the relations. Remarkably, the relations can
be stated independently of n. As a corollary of our main result, we obtain a similar presentation
for the group of matrices of the form M/

√
2k mentioned above.
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The paper is structured as follows. In Section 2, we introduce the generators, along with some
basic definitions. In Section 3, we give a detailed presentation of the exact synthesis algorithm of
[3]. In Section 4, we introduce the relations and prove our main result: the relations are sound
and complete. In Section 5, we use the results of Section 4 to give a presentation of the group of
orthogonal scaled dyadic matrices. We draw some final conclusions in Section 6.

2 Generators

Definition 2.1. The ring of dyadic rationals is defined as Z
[
1
2

]
=
{
u
2k
| u ∈ Z, k ∈ N

}
.

Definition 2.2. Let t be a dyadic rational. A natural number k is a denominator exponent of t if
2kt ∈ Z. The least such k is called the least denominator exponent of t and is denoted by lde(t).

We extend Definition 2.2 to matrices as follows. A natural number k is a denominator exponent
of a matrix M if it is a denominator exponent of all of the entries of M . Similarly, the least
denominator exponent of M is the least k that is a denominator exponent for all of its entries,
which we write lde(M).

Definition 2.3. The n-dimensional group of orthogonal dyadic matrices consists of the n × n
orthogonal matrices with entries in Z

[
1
2

]
. It is denoted On

(
Z
[
1
2

])
.

Definition 2.4. The matrices X, H, and K are defined as

X =

[
0 1
1 0

]
, H =

1√
2

[
1 1
1 −1

]
, and K =

1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .
The matrix X is known as the Pauli X gate and the matrix H is known as the Hadamard gate.

We have K = H ⊗ H, where ⊗ is the usual tensor product. We now embed X, H, and K into
larger matrices which will serve as our generators.

Definition 2.5. Let M be an m×m matrix, let m ≤ n, and let 1 ≤ a1, . . . , am ≤ n. The m-level
matrix of type M is the n× n matrix M[a1,...,am] defined by

M[a1,...,am]i,j
=

{
Mi′,j′ if i = ai′ and j = aj′

Ii,j otherwise.

Definition 2.6. The set Gn of n-dimensional generators is the subset of On

(
Z
[
1
2

])
defined as

Gn = {(−1)[a], X[a,b],K[a,b,c,d] | 1 ≤ a < b < c < d ≤ n}.

3 Constructive Membership for On

(
Z
[

1
2

])
In this section, we present a solution to the constructive membership problem for On

(
Z
[
1
2

])
, follow-

ing [3]. To this end, we describe an algorithm which inputs an arbitrary element M of On

(
Z
[
1
2

])
and outputs a sequence of elements of Gn representing M . As is common in the quantum computing
literature, we refer to the algorithm as the exact synthesis algorithm. In addition to showing that
Gn generates On

(
Z
[
1
2

])
, the algorithm will play a central role in the rest of the paper.
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Lemma 3.1. Let u1, u2, u3, u4 be odd integers. Then there exists τ1, τ2, τ3, τ4 ∈ Z2 such that

K[1,2,3,4](−1)τ1[1](−1)τ2[2](−1)τ3[3](−1)τ4[4]


u1
u2
u3
u4

 =


u′1
u′2
u′3
u′4


where u′1, u

′
2, u
′
3, u
′
4 are even integers.

Proof. Because ui ≡ 1 (mod 2), we have ui ≡ 1, 3 (mod 4). And since −3 ≡ 1 (mod 4) there exists
τi ∈ Z2 such that (−1)τiui ≡ 1 (mod 4). The claim then follows by computation.

Lemma 3.2. Let v ∈ Z
[
1
2

]n
be a unit vector. If lde(v) = k > 0, then there exists a sequence

G1, . . . , Gq of elements of Gn such that lde(Gq · · ·G1v) < k.

Proof. Let w = 2kv, so that w ∈ Zn. Since vᵀv = 1, we have wᵀw = 4k and therefore
∑
w2
j = 4k.

Note that w2
j ≡ 1(4) if and only if wj is odd and that w2

j ≡ 0(4) if and only if wj is even. Hence

the number of wj such that w2
j ≡ 1(4) is a multiple of 4. Let wa1 , . . . , wa4q be the odd entries of w

in order of increasing index. We can apply Lemma 3.1 to wa1 , . . . , wa4 , then to wa5 , . . . , wa8 , and
so on until the entries of w are all even. This yields a sequence G1, · · · , Gq ∈ Gn such that

Gq · · ·G1v = Gq · · ·G1
1

2k
w =

2

2k
w′ =

1

2k−1
w′

where w′ ∈ Zn.

Lemma 3.3. Let v ∈ Z
[
1
2

]n
be a unit vector. If lde(v) = 0, then v = ±ej for some 1 ≤ j ≤ n,

where ej is the j-th standard basis vector.

Proof. If k = 0 then v ∈ Zn. Since v is a unit vector we then get
∑
v2j = 1. Since the vj are

integers, there must be exactly one j such that vj = ±1 while all the other entries of v are 0.

Lemma 3.4. Let v ∈ Z
[
1
2

]n
be a unit vector and let 1 ≤ j ≤ n. Then there exists a sequence of

generators G1, . . . , Gq ∈ Gn such that Gq · · ·G1v = ej.

Proof. By induction on lde(v). If lde(v) = 0 then v = ±ej′ for some j′, by Lemma 3.3. If ej′ = ej
there is nothing to do. Otherwise, we can map v to ej by applying an optional (−1) generator
followed by an optional X generator. Now if lde(v) = k > 0 then by Lemma 3.2 there exists a
sequence Gp, . . . , G1 of elements of Gn such that lde(Gp · · ·G1v) < lde(v). By induction, there
exists a sequence Gp+1, . . . , Gq such that Gq · · ·Gp+1Gp · · ·G1v = ej .

Lemma 3.4 can be used iteratively on the columns of an arbitrary element of On

(
Z
[
1
2

])
to

reduce it to the identity matrix.

Theorem 3.5. Let M be an n× n matrix. Then M ∈ On

(
Z
[
1
2

])
if, and only if, M can be written

as a product of elements of Gn.

Proof. The right-to-left direction follows from the fact that Gn ⊆ On

(
Z
[
1
2

])
. For the left-to-right

direction, apply Lemma 3.4 to reduce the rightmost column ofM to en, then proceed recursively.
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Algorithm 1: Exact Synthesis

Input : An element M of On

(
Z
[
1
2

])
Output: A sequence W1, . . . ,W` of words over Gn such that W` · · ·W1M = I

1 N ←M
2 while N 6= I do
3 Let j be the greatest integer such that Nej 6= ej
4 Let v = Nej
5 Let k = lde(v)

6 Let w = 2kv
7 case k = 0 do
8 Let v = (−1)τea for some a such that 1 ≤ a ≤ j and some τ ∈ Z2

9 if a = j then W = (−1)τ[j] // note that τ = 1 in this case

10 if a < j then W = X[a,j](−1)τ[a]
11 end
12 case k > 0 do
13 Let a, b, c, d be the indices of the first four odd entries of w
14 Let τa, τb, τc, τd ∈ Z2 be such that (−1)τiwi ≡ 1 (mod 4) for i ∈ {a, b, c, d}
15 W = K[a,b,c,d](−1)τa[a](−1)τb[b](−1)τc[c](−1)τd[d]
16 end
17 Output W
18 N ←WN

19 end

The algorithm establishing the left-to-right direction of Theorem 3.5 is the exact synthesis
algorithm. For future reference, an explicit description is given in Algorithm 1.

Intuitively, Algorithm 1 terminates because each iteration of the algorithm rewrites the input
matrix into one that is closer to the identity. We introduce a notion of level which makes this
intuition precise.

Definition 3.6. Let M ∈ On

(
Z
[
1
2

])
. The level of M is the triple (j, k, `), where

• j is the largest element of [n] such that Mej 6= ej , or j = 0 if no such index exists;

• k = lde(Mej), or k = 0 if j = 0; and

• ` is the number of odd entries in 2k(Mej), or ` = 0 if k = 0.

We denote the level of M by level(M). If level(M) = (j, k, `) we call Mej the pivot column of M .

Levels are ordered lexicographically and it can be verified that each iteration of the algorithm
strictly decreases the level of N .

4 A Finite Presentation of On

(
Z
[

1
2

])
Theorem 3.5 shows that the group generated by Gn is On

(
Z
[
1
2

])
. However, On

(
Z
[
1
2

])
is not free

over Gn since there are relations among the generators, such as (−1)[1](−1)[1] = I. Our goal is
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to give a presentation of On

(
Z
[
1
2

])
by generators and relations, adopting the approach of [8]. We

start by introducing some useful terminology.
If A is a set, we write A∗ for the collection of words over A. We use W to denote words,

and we sometimes write ε for the empty word. If W = A1 . . . Am is a word over A then the
length of W is m. We will be particularly interested in words over Gn. Any such word W can be
interpreted as an element [[W ]] of On

(
Z
[
1
2

])
by multiplying the generators that compose W . That

is, if W = G1 . . . Gm then
[[W ]] = G1 · . . . ·Gm−1 ·Gm,

where the product is the usual multiplication of matrices. This notion of interpretation induces a
first equivalence relation on G∗n.

Definition 4.1. The relation ∼ on G∗n is defined by V ∼W if [[V ]] = [[W ]]. Two words V and W
such that V ∼W are said to be semantically equivalent.

Intuitively, two words are semantically equivalent if they denote the same element of On

(
Z
[
1
2

])
.

In contrast to this semantic notion of equivalence, we now introduce a syntactic notion of equivalence
which does not rely on the interpretation of words as matrices.

Definition 4.2. The relation ≈ on G∗n is the smallest equivalence relation on G∗n containing the
relations of Table 1 and such that if V ≈ V ′ and W ≈ W ′ then V W ≈ V ′W ′. Two words V
and W such that V ≈W are said to be syntactically equivalent.

The relation ≈ is the smallest congruence relation on G∗n containing the relations of Table 1.
Intuitively, two words are syntactically equivalent if one word can be rewritten into the other
through a finite number of applications of the relations contained in Table 1.

We want to show that two words V and W are semantically equivalent if and only if they are
syntactically equivalent. This is achieved by establishing the two implications below.

Soundness: Let G and H be words over Gn. Then G ≈H implies G ∼H.

Completeness: Let G and H be words over Gn. Then G ∼H implies G ≈H.

Soundness and completeness together imply that the semantic and syntactic relations coincide. This
yields a presentation of On

(
Z
[
1
2

])
by generators and relations. We prove soundness in Section 4.1

and completeness in Section 4.2.

4.1 Soundness

Theorem 4.3 (Soundness). Let G and H be words over Gn. Then G ≈H implies G ∼H.

Proof. It suffices to show that the relations in Table 1 are sound. This can be verified by direct
computation.

4.2 Completeness

Algorithm 1 associates a word over Gn to every element of On

(
Z
[
1
2

])
. Because the algorithm is

deterministic, the word it associates to an element M of On

(
Z
[
1
2

])
can be viewed as a normal form

for M . Our strategy to prove completeness is to show that the relations of Table 1 suffice to rewrite
an arbitrary word over Gn into its normal form.

5



X2
[a,b] ≈ ε (1a)

(−1)2[a] ≈ ε (1b)

K2
[a,b,c,d] ≈ ε (1c)

X[a,b]X[c,d] ≈ X[c,d]X[a,b] (2a)

X[a,b](−1)[c] ≈ (−1)[c]X[a,b] (2b)

X[a,b]K[c,d,e,f ] ≈ K[c,d,e,f ]X[a,b] (2c)

(−1)[a](−1)[b] ≈ (−1)[b](−1)[a] (2d)

(−1)[a]K[b,c,d,e] ≈ K[b,c,d,e](−1)[a] (2e)

K[a,b,c,d]K[e,f,g,h] ≈ K[e,f,g,h]K[a,b,c,d] (2f)

X[a,a′]X[a,b] ≈ X[a′,b]X[a,a′] (3a)

X[b,b′]X[a,b] ≈ X[a,b′]X[b,b′] (3b)

X[a,b](−1)[b] ≈ (−1)[a]X[a,b] (3c)

X[a,a′]K[a,b,c,d] ≈ K[a′,b,c,d]X[a,a′] (3d)

X[b,b′]K[a,b,c,d] ≈ K[a,b′,c,d]X[b,b′] (3e)

X[c,c′]K[a,b,c,d] ≈ K[a,b,c′,d]X[c,c′] (3f)

X[d,d′]K[a,b,c,d] ≈ K[a,b,c,d′]X[d,d′] (3g)

X[a,b]K[a,b,c,d] ≈ K[a,b,c,d]X[b,d](−1)[b](−1)[d] (4a)

X[b,c]K[a,b,c,d] ≈ (−1)[a]K[a,b,c,d](−1)[a]K[a,b,c,d](−1)[a] (4b)

X[c,d]K[a,b,c,d] ≈ K[a,b,c,d]X[b,d] (4c)

K[a,b,c,d]K[b,d,e,f ] ≈ K[c,d,e,f ]K[a,b,c,e] (5a)

(−1)[a](−1)[e]X[a,e]K[e,f,g,h]K[a,b,c,d]X[d,e]K[a,b,c,d]K[e,f,g,h]X[a,e](−1)[a](−1)[e]

≈
K[e,f,g,h]K[a,b,c,d]X[d,e]K[a,b,c,d]K[e,f,g,h]

(6a)

Table 1: Relations for On

(
Z
[
1
2

])
. One should assume that the indices are distinct and that the

relations are well-formed. For example, in Relation (5a) we have a < b < c < d < e < f .
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4.2.1 The State Graph

We start by introducing a useful graph representation for On

(
Z
[
1
2

])
. This graph representation

is akin to a Cayley graph for On

(
Z
[
1
2

])
but is intended to highlight the words produced by Al-

gorithm 1. Recall that steps 9, 10, and 15 of Algorithm 1 produce short words over Gn of the
form

(−1)[a], X[a,b](−1)τa[a], and K[a,b,c,d](−1)τa[a](−1)τb[b](−1)τc[c](−1)τd[d]

for appropriately chosen a, b, c, d and τa, τb, τc, τd. We refer to these words as syllables.

Definition 4.4. The state graph is the directed graph whose vertices and edges are defined as
follows.

• The vertices are the elements of On

(
Z
[
1
2

])
and are referred to as states.

• There are two types of edges:

– simple edges, which are triples 〈s′, G, s〉 where s, s′ ∈ On

(
Z
[
1
2

])
, G ∈ Gn and s′ = Gs;

– normal edges, which are triples 〈s′, N, s〉 where s, s′ ∈ On

(
Z
[
1
2

])
, N is the unique first

syllable output by Algorithm 1 on input s, and s′ = Ns.

We denote the edge 〈s′, G, s〉 by s
G−→ s′ or G : s→ s′. We use a double line to indicate that an

edge is normal, as in N : s ⇒ s′. When the source and target of an edge 〈s′, G, s〉 are clear from
context we sometimes simply denote the edge by G.

We note that for every state s 6= I, there exists a unique normal edge originating at s. Moreover,
if N : s ⇒ s′ is normal, then level(s′) < level(s). As a result, for every state s 6= I, there exists a
unique sequence of normal edges from s to I.

Definition 4.5. Let G be the following sequence of simple edges

G = s0
G1−−→ s1 . . . sn−1

Gn−−→ sn.

The level of G, denoted level(G), is the maximum of the levels of the states s0, . . . , sn. That is,
level(G) = max{level(s0), . . . , level(sn)}.

Intuitively, the level of a sequence of edges is the largest level reached by a state along that
sequence.

Definition 4.6. Let G,G′ : s→ t be two sequences of edges. We say that the diagram

s t

G′

G

commutes equationally if G ≈ G′.
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4.2.2 The Main Lemma and the Proof of Completeness

Lemma 4.7 (Main Lemma). Let s, t, and r be states, N : s⇒ t be a normal edge, and G : s→ r
be a simple edge. Then there exists a state q, a sequence of normal edges N ′ : r ⇒ q, and a sequence
of simple edges G′ : t→ q such that the diagram

s r

t q

N

G

N ′

G′

commutes equationally and level(G′) < level(s).

The proof of Lemma 4.7 is a very long case distinction which can be found in Appendix A. We
now show how Lemma 4.7 can be used to derive completeness.

Lemma 4.8. Let G : s → r be a simple edge, N : s ⇒ I be the unique sequence of normal edges
from s to I, and M : r ⇒ I be the unique sequence of normal edges from r to I. Then MG ≈N .

Proof. We proceed by induction on the level of s. When level(s) = (0, 0, 0), then s = I and N = ε.
In this case, r = G so that M = G and MG ≈ N by Relations 1a, 1b, or 1c. Now suppose that
level(s) > (0, 0, 0). Then s 6= I, so that N can be written as N = N ′N where N : s ⇒ t0 is a
normal edge and N ′ : t0 ⇒ I is a sequence of normal edges. By Lemma 4.7, there exists a state tk,
a sequence normal edges M : r ⇒ tk, and a sequence of simple edges G′ : t0 → tk such that MG ≈
G′N and level(G′) < level(s). Write the sequence G′ as G′ = Gk . . . G1, where G` : t`−1 → t` is
a simple edge for 1 ≤ ` ≤ k. For each `, let N` : t` ⇒ I be the unique sequence of normal edges
from t` to I. Since level(t`) < level(s), then, by the induction hypothesis, N`G` ≈ N`−1. Thus,
since ≈ is a congruence relation, we get N ′ = NkG

′. Hence, N ′N ≈ NkG
′N ≈ NkMG and, by

the uniqueness of normal edges, we conclude that N = N ′N ≈NkMG = MG.

Lemma 4.9. Let G : s → I be any sequence of simple edges with final state I and N : s ⇒ I be
the unique sequence of normal edges from s to I. Then G ≈N .

Proof. We proceed by induction on the length of G. When G = ε, then s = I and N = ε. Thus,
in the base case, we have G ≈ N . Now suppose that there is a state r such G = G′G for some
simple edge G : s → r and some sequence of simple edges G′ : r → I. Let M : r ⇒ I be the
unique sequence of normal edges from r to I. By the induction hypothesis, we have G′ ≈ M ,
and, by Lemma 4.8, MG ≈ N . It follows, since ≈ is a congruence relation, that G′G ≈ G. Thus
G ≈N .

Theorem 4.10 (Completeness). Let G and H be words over Gn. Then G ∼H implies G ≈H.

Proof. Since G ∼ H, we have [[G]] = [[H]]. Let s = [[G]]−1 = [[H]]−1 and let N : s ⇒ I be the
unique sequence of normal edges from s to I. By Lemma 4.9, G ≈ N and H ≈ N so that, since
≈ is an equivalence relation, G ≈H.
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(I ⊗H)2 ≈ ε (7a)

(I ⊗H)K[1,2,3,4](I ⊗H) ≈ K[1,2,3,4] (7b)

(I ⊗H)(−1)[1](I ⊗H) ≈ (−1)[1]X[1,2](−1)[1] (7c)

(I ⊗H)X[a,a+1](I ⊗H) ≈ (−1)a+1
[a+1]X

a
[a,a+1]K

a
[a−1,a,a+1,a+2] (7d)

Table 2: Relations for Ln

5 Orthogonal Scaled Dyadic Matrices

As discussed in Section 1, the elements of On

(
Z
[
1
2

])
correspond exactly to quantum circuits over

the gate set {CCX,H ⊗H}. Replacing the H ⊗H gate with the H gate results in a more familiar
gate set. In this final section, we give a presentation of the corresponding matrix group.

Definition 5.1. The n-dimensional group of orthogonal scaled dyadic matrices consists of the n×n
orthogonal matrices of the form M/

√
2k, where M is an integer matrix and k is a nonnegative

integer. It is denoted Ln.

The notions of denominator exponent and least denominator exponent, as introduced for dyadic
matrices in Section 2, also apply to scaled dyadic matrices. For elements of Ln, however, one
should consider powers of 1/

√
2, rather than powers of 1/2. As a result, in this final section, (least)

denominator exponents are considered with respect to 1/
√

2.
Note that On

(
Z
[
1
2

])
⊆ Ln. It is known from [3] that Ln = On

(
Z
[
1
2

])
when n is odd. When n

is even, Ln is a proper subgroup of On

(
Z
[
1
2

])
of index 2. As a consequence, we focus on the case

of even n in what follows.
To obtain a set of generators for Ln when n is even, it suffices to add In/2 ⊗ H to Gn, where

In/2 ⊗H is the n× n block-diagonal matrix

In/2 ⊗H = diag(H, . . . ,H).

For simplicity, when n is clear from context, we write I ⊗ H for In/2 ⊗ H. Note that, unlike the
other generators, I ⊗H is a global matrix which acts non-trivially on entries of a vector or matrix.

Definition 5.2. Let n be even. The set of n-dimensional generators is the subset of Ln defined as

Fn = {(−1)[a], X[a,b],K[a,b,c,d], I ⊗H | 1 ≤ a, b, c, d ≤ n}.

The relation of semantic equivalence is defined on F∗n as in Definition 4.1. We adapt the relation
of syntactic equivalence on F∗n by adding further relations to account for the additional generator.

Definition 5.3. The relation ≈ on F∗n is the smallest equivalence relation on F∗n containing the
relations of Tables 1 and 2 and such that if V ≈ V ′ and W ≈W ′ then V W ≈ V ′W ′. Two words
V and W such that V ≈W are said to be syntactically equivalent.

To obtain a presentation of Ln, we establish soundness and completeness. As in the case
of On

(
Z
[
1
2

])
, soundness is proved by computation and is therefore stated without proof. For

completeness, we leverage Theorem 4.10.
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Theorem 5.4 (Soundness). Let n be even. Let G and H be words over Fn. Then G ≈H implies
G ∼H.

Lemma 5.5. Let n be even. For every word G over Gn there exists a word G′ over Gn such that
(I ⊗H)G ≈ G′ (I ⊗H).

Proof. By Lemma A.19 and Theorem 4.10, every word in G∗n is syntactically equivalent to one that
uses only (−1)[1], K[1,2,3,4] and X[a,a+1]. The claim then follows from the relations in Table 2.

Corollary 5.6. Let n be even and let G ∈ F∗n. If the least denominator exponent of [[G]] is even,
there exists G′ ∈ G∗n such that G ≈ G′. If the least denominator of [[G]] is odd, there exists G′ ∈ G∗n
such that G ≈ G′(I ⊗H).

Proof. Let k be the least denominator exponent of [[G]] (with respect to 1/
√

2). Through repeated
application of Lemma 5.5, we can push all of the occurrence of I ⊗ H in G to the right in order
to rewrite G as G′(I ⊗H)` for some ` ∈ N such that ` ≡ k (mod 2). The result then follows from
Relation (7a).

Theorem 5.7 (Completeness). Let G and H be words over Fn. Then G ∼H implies G ≈H.

Proof. Let k = lde([[G]]) = lde([[H]]). If k is even, by Corollary 5.6, G ≈ G′ and H ≈H ′ for some
G′,H ′ ∈ G∗n. Thus G′ ∼ H ′ and by Theorem 4.10 G′ ≈ H ′. Hence, G ≈ H. If k is odd, by
Corollary 5.6, G ≈ G′(I ⊗H) and H ≈ H ′(I ⊗H) for some G′,H ′ ∈ G∗n. Thus G′ ∼ H ′ and by
Theorem 4.10 G′ ≈H ′. Hence, G ≈H.

6 Conclusion

In this paper, we gave a finite presentation of the groups On

(
Z
[
1
2

])
and Ln, which arise in the study

of so-called restricted Clifford+T circuits. A natural extension of this work is to study the matrix
groups which correspond to alternative restrictions of the Clifford+T gate set. Another avenue for
future research is to interpret the relations of Tables 1 and 2 as relations between quantum circuits
and to use them to optimize restricted Clifford+T circuits.
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This appendix contains a proof of the Main Lemma (Lemma 4.7). We first record some important
properties of K[a,b,c,d] in Appendix A.1. Then, in Appendix A.2, we introduce derived relations
which are helpful in establishing that certain diagrams commute. In Appendix A.3, we distinguish
between simple edges and basic edges in order to simplify the proof of Lemma 4.7. The proof of
the Main Lemma, a long case distinction, can be found in Appendix A.4.
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A.1 Properties of K[a,b,c,d]

We start by recording a few useful properties of K[a,b,c,d]. To this end, it will be useful to consider
the vector of residues associated to a vector of integers. For brevity, we will sometimes write
u ≡ r1 · · · rn (mod m) if ui ≡ ri (mod m) for 1 ≤ i ≤ n.

Let u ∈ Z4 and define the vectors v and w as

v =


u1 + u2 + u3 + u4
u1 − u2 + u3 − u4
u1 + u2 − u3 − u4
u1 − u2 − u3 + u4


and w = v/2. Then w = K[1,2,3,4]u. Note that while v ∈ Z4, for w we have w ∈ Z4 or w ∈ Z

[
1
2

]
4

Lemma A.1. Let u ∈ Z4 and suppose that u1 + u2 + u3 + u4 ≡ 0 (mod 2). Then K[1,2,3,4]u = w
for some w ∈ Z4.

Proof. Write v as above. Then, since u1 + u2 + u3 + u4 ≡ 0 (mod 2) and ui ≡ −ui (mod 2), we
have vi ≡ 0 (mod 2). The result then follows by setting vi = 2wi and noting that K[1,2,3,4]u =
v/2 = w.

Lemma A.2. Let u ∈ Z4 and suppose that u ≡ 1111 (mod 2). Then

• if the number of entries in u that are congruent to 1 modulo 4 is even, then K[1,2,3,4]u = w
for some w ∈ Z4 such that w ≡ 0000 (mod 2), and

• if the number of entries in u that are congruent to 1 modulo 4 is odd, then K[1,2,3,4]u = w for
some w ∈ Z4 such that w ≡ 1111 (mod 2) and the number of entries in w that are congruent
to 1 modulo 4 is odd.

Proof. We know from Lemma A.1 that w ∈ Z4. Now write v as above. It can then be verified that
if there are evenly many ui such that ui ≡ 1 (mod 4), then v ≡ 0000 (mod 4), so that w ≡ 0000
(mod 2). Similarly, if there are oddly many ui such that ui ≡ 1 (mod 4), then v ≡ 2222 (mod 4),
so that w ≡ 1111 (mod 2).

Finally, suppose that u ≡ 1111 (mod 2), that the number of ui ≡ 1 (mod 4) is odd, and that the
number of wi ≡ 1 (mod 4) is even. Then by the first part of the lemma we have K[1,2,3,4]w ≡ 0000
(mod 2). But this is a contradiction since

K[1,2,3,4]w = K[1,2,3,4]K[1,2,3,4]u = u

and u ≡ 1111 (mod 2) by assumption.

Lemma A.3. Let u ∈ Z4 and suppose that uᵀu ≡ 2 (mod 4). Then u has exactly two odd entries
and K[1,2,3,4]u = w for some w ∈ Z4. Moreover,

• if u ≡ 1100 (mod 2) then w ≡ 1010 (mod 2) or w ≡ 0101 (mod 2),

• if u ≡ 1010 (mod 2) then w ≡ 1100 (mod 2) or w ≡ 0011 (mod 2),

• if u ≡ 1001 (mod 2) then w ≡ 1001 (mod 2) or w ≡ 0110 (mod 2),
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• if u ≡ 0110 (mod 2) then w ≡ 1001 (mod 2) or w ≡ 0110 (mod 2),

• if u ≡ 0101 (mod 2) then w ≡ 1100 (mod 2) or w ≡ 0011 (mod 2), and

• if u ≡ 0011 (mod 2) then w ≡ 1010 (mod 2) or w ≡ 0101 (mod 2).

Proof. Since uᵀu ≡ 2 (mod 4), u has exactly two odd entries. Thus, by Lemma A.1, K[1,2,3,4]u = w
for some w ∈ Z4. Now suppose that u ≡ 1100 (mod 2). Then u1 ≡ u2 ≡ 1 (mod 2) and u3 ≡ u4 ≡ 0
(mod 2). Note that (±u3) + (±u4) ≡ 2u3 (mod 4). If u1 ≡ u2 (mod 4) we get

v =


u1 + u2 + u3 + u4
u1 − u2 + u3 − u4
u1 + u2 − u3 − u4
u1 − u2 − u3 + u4

 =


2u1 + 2u3

2u3
2u1 + 2u3

2u3


so that v ≡ 2020 (mod 4) and w = v/2 ≡ 1010 (mod 2). And if u1 6≡ u2 (mod 4) we get

v =


u1 + u2 + u3 + u4
u1 − u2 + u3 − u4
u1 + u2 − u3 − u4
u1 − u2 − u3 + u4

 =


2u3

2u1 + 2u3
2u3

2u1 + 2u3


so that v ≡ 0202 (mod 4) and w = v/2 ≡ 1010 (mod 2). The remaining cases are proved similarly.

Lemma A.4. Let u ∈ Z4 and suppose that uᵀu ≡ 1 (mod 2). Then u has exactly one or three odd
entries and K[1,2,3,4]u = w for some w 6∈ Z4. Moreover, for v = 2w ∈ Z4, we have

• if u ≡ 1000 (mod 2) or u ≡ 0111 (mod 2) then v ≡ 1111 (mod 4) or v ≡ 3333 (mod 4),

• if u ≡ 0100 (mod 2) or u ≡ 1011 (mod 2) then v ≡ 1313 (mod 4) or v ≡ 3131 (mod 4),

• if u ≡ 0010 (mod 2) or u ≡ 1101 (mod 2) then v ≡ 1133 (mod 4) or v ≡ 3311 (mod 4), and

• if u ≡ 0001 (mod 2) or u ≡ 1110 (mod 2) then v ≡ 1331 (mod 4) or v ≡ 3113 (mod 4).

Proof. Since uᵀu ≡ 1 (mod 2), u has oddly many odd entries. Writing v and w as above, we see
that v ≡ 1111 (mod 2) so that w 6∈ Z4.

Now, if u ≡ 1000 (mod 2), then

(±u2) + (±u3) + (±u4) ≡ 3u2 (mod 4).

Hence, we either have v ≡ 1111 (mod 4) when 3u2 ≡ 0 (mod 4) or v ≡ 3333 (mod 4) when 3u2 ≡ 2
(mod 4). This proves the first item. The remaining items are proved similarly.

Lemma A.5. Let u ∈ Z4 and suppose that u ≡ 1111 (mod 4). Then K[1,2,3,4]u = 2w′ for some
w′ ∈ Z4 such that w′ ≡ 1000 (mod 2) or w′ ≡ 0111 (mod 2).

Proof. Let v ∈ Z4 be defined as above. Since ui ≡ 1 (mod 4), we have vi ≡ 0 (mod 4). Moreover,
ui ≡ 1 (mod 4) also implies that u2 + u4 ≡ 2 (mod 4), so that u2 + u4 ≡ −(u2 + u4) (mod 4), and
thus that u2 +u4 ≡ −(u2 +u4) + 4 (mod 8). As a result, v2 ≡ v1 + 4 (mod 8). Reasoning similarly
we find that v3 ≡ v1 + 4 (mod 8) and that v4 ≡ v1 + 4 (mod 8). The result then follows by setting
vi = 4w′i and noting that K[1,2,3,4]u = v/2 = 2w′.

13



Lemma A.6. Let u ∈ Z4 and suppose that u ≡ 0000 (mod 2) and that uᵀu ≡ 0 (mod 8). Then
K[1,2,3,4]u = w for some w ∈ Z4 such that w ≡ 0000 (mod 2).

Proof. We have uᵀu ≡ 0 (mod 8). Since the square of an even integer is congruent to 0 or 4
modulo 8 there must be evenly many ui such that u2i ≡ 4 (mod 8). Therefore, there must be
evenly many ui such that ui ≡ 2 (mod 4). The result then follows by computation, as in the proof
of Lemma A.1.

Lemma A.7. Let u ∈ Z4 and suppose that u ≡ 0000 (mod 2) and that uᵀu ≡ 4 (mod 8). Then
K[1,2,3,4]u = w for some w ∈ Z4 such that w ≡ 1111 (mod 2). Moreover, evenly many of the entries
of w are congruent to 1 modulo 4.

Proof. The first statement is shown as in Lemma A.6. For the second statement, suppose that oddly
many of the entries of w were congruent to 1 modulo 4. Then w1+w2+w3+w4 ≡ 2 (mod 4). Then
(w1 +w2 +w3 +w4)/2 ≡ 1 (mod 2). But this is a contradiction since (w1 +w2 +w3 +w4)/2 = v1
and v1 ≡ 0 (mod 2) by assumption.

Lemma A.8. Let u ∈ Z8 and suppose that u ≡ 11111111 (mod 2). Then either uᵀu ≡ 0 (mod 16)
or uᵀu ≡ 8 (mod 16).

Proof. Since the square of an odd integer is either 1 or 9 modulo 16, then uᵀu ≡ x+ 9y (mod 16)
where x is the number of entries whose square is congruent to 1 and y is the number of entries
whose square is congruent to 9. But x+ y = 8, so that uᵀu ≡ 0 (mod 16) or uᵀu ≡ 8 (mod 16) as
desired.

Lemma A.9. Let u ∈ Z8 and suppose that u ≡ 11111111 (mod 4). If uᵀu ≡ 0 (mod 16) then
K[1,2,3,4]K[5,6,7,8]u = 2w for some w ∈ Z8 such that w ≡ 10000111 (mod 2) or w ≡ 01111000
(mod 2).

Proof. We know by Lemma A.5 that K[1,2,3,4]K[5,6,7,8]u = 2w for some w ∈ Z8 such that the vector
of residues of w is one of

10001000, 10000111, 01111000, or 01110111.

But, since K is orthogonal and uᵀu ≡ 0 (mod 16), we have 4(wᵀw) ≡ uᵀu ≡ 0 (mod 16) and
therefore wᵀw ≡ 0 (mod 4) so that w ≡ 10000111 (mod 2) or w ≡ 01111000 (mod 2) as claimed.

Lemma A.10. Let u ∈ Z8 and suppose that u ≡ 11111111 (mod 4). If uᵀu ≡ 8 (mod 16) then
K[1,2,3,4]K[5,6,7,8]u = 2w for some w ∈ Z8 such that w ≡ 10001000 (mod 2) or w ≡ 01110111
(mod 2).

Proof. Similar to the proof of Lemma A.9.

A.2 Derived Relations

In this section, we show that certain convenient relations can be derived from the relations given
in Table 1. In the derivations, we sometimes use certain relations implicitly: we remove adjacent
pairs of identical generators using Relations (1a), (1b) and (1c), we commute generators acting on
distinct indices using Relations (2a), (2b), (2c), (2d), (2e) and (2f), and we change indices using
Relations (3a), (3b), (3c), (3d), (3e), (3f) and (3g).
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Proposition A.11. The relations below are derivable.

X[a,c]K[a,b,c,d] ≈ K[a,b,c,d]X[c,d](−1)[c](−1)[d] (8a)

X[a,d]K[a,b,c,d] ≈ K[a,b,c,d]X[b,d]X[c,d]X[b,d](−1)[b](−1)[c] (8b)

X[b,c]K[a,b,c,d] ≈ K[a,b,c,d]X[b,c] (8c)

X[b,d]K[a,b,c,d] ≈ K[a,b,c,d]X[c,d] (8d)

Proof. For Relation (8c), using Relation (4b), we have

X[b,c]K[a,b,c,d] ≈ (−1)[a]K[a,b,c,d](−1)[a]K[a,b,c,d](−1)[a]K[a,b,c,d]K[a,b,c,d]

≈ (−1)[a]K[a,b,c,d](−1)[a]K[a,b,c,d](−1)[a]

≈ K[a,b,c,d]K[a,b,c,d](−1)[a]K[a,b,c,d](−1)[a]K[a,b,c,d](−1)[a]

≈ K[a,b,c,d]X[b,c].

For Relation (8a), using Relations (4a) and (8c), we have

X[a,c]K[a,b,c,d] ≈ X[b,c]X[a,b]X[b,c]K[a,b,c,d]

≈ X[b,c]X[a,b]K[a,b,c,d]X[b,c]

≈ X[b,c]K[a,b,c,d]X[b,d](−1)[b](−1)[d]X[b,c]

≈ K[a,b,c,d]X[b,c]X[b,d](−1)[b](−1)[d]X[b,c]

≈ K[a,b,c,d]X[c,d](−1)[c](−1)[d].

For Relation (8b), using Relations (4c) and (8a), we have

X[a,d]K[a,b,c,d] ≈ X[c,d]X[a,c]X[c,d]K[a,b,c,d]

≈ X[c,d]X[a,c]K[a,b,c,d]X[b,d]

≈ X[c,d]K[a,b,c,d]X[c,d](−1)[c](−1)[d]X[b,d]

≈ K[a,b,c,d]X[b,d]X[c,d](−1)[c](−1)[d]X[b,d]

≈ K[a,b,c,d]X[b,d]X[c,d]X[b,d](−1)[b](−1)[c].

Finally, Relation (8d) is the adjoint of Relation (4c).

Along with Relations (4a) and (8c), the relations of Proposition A.11 will allow us to move an
x generator passed a K generator when the X generator acts on two of the indices on which the
K generator acts. The next proposition shows how to move evenly many occurrences of a (−1)
generator passed a K generator.

Proposition A.12. The relations below are derivable.

(−1)[a](−1)[b]K[a,b,c,d] ≈ K[a,b,c,d]X[a,c]X[b,d](−1)[a](−1)[b](−1)[c](−1)[d] (9a)

(−1)[a](−1)[c]K[a,b,c,d] ≈ K[a,b,c,d]X[a,b]X[c,d](−1)[a](−1)[b](−1)[c](−1)[d] (9b)

(−1)[a](−1)[d]K[a,b,c,d] ≈ K[a,b,c,d]X[a,d]X[b,c](−1)[a](−1)[b](−1)[c](−1)[d] (9c)

(−1)[b](−1)[c]K[a,b,c,d] ≈ K[a,b,c,d]X[a,d]X[b,c] (9d)

(−1)[b](−1)[d]K[a,b,c,d] ≈ K[a,b,c,d]X[a,b]X[c,d] (9e)

(−1)[c](−1)[d]K[a,b,c,d] ≈ K[a,b,c,d]X[a,c]X[b,d] (9f)

(−1)[a](−1)[b](−1)[c](−1)[d]K[a,b,c,d] ≈ K[a,b,c,d](−1)[a](−1)[b](−1)[c](−1)[d] (9g)
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Proof. For Relation (9e), using Relations (4a) and (4c), we have

(−1)[b](−1)[d]K[a,b,c,d] ≈ (−1)[b](−1)[d]K[a,b,c,d]X[c,d]X[c,d]

≈ (−1)[b](−1)[d]X[b,d]K[a,b,c,d]X[c,d]

≈ K[a,b,c,d]X[a,b]X[c,d].

For Relation (9f), using Relations (8c) and (9e), we have

(−1)[c](−1)[d]K[a,b,c,d] ≈ X[b,c](−1)[b]X[b,c](−1)[d]K[a,b,c,d]

≈ X[b,c](−1)[b](−1)[d]K[a,b,c,d]X[b,c]

≈ X[b,c]K[a,b,c,d]X[a,b]X[c,d]X[b,c]

≈ K[a,b,c,d]X[b,c]X[a,b]X[c,d]X[b,c]

≈ K[a,b,c,d]X[b,c]X[a,b]X[b,c]X[b,c]X[c,d]X[b,c]

≈ K[a,b,c,d]X[a,c]X[b,d].

For Relation (9d), using Relations (4c) and (9f), we have

(−1)[b](−1)[c]K[a,b,c,d] ≈ (−1)[c]X[b,d](−1)[d]X[b,d]K[a,b,c,d]

≈ (−1)[c]X[b,d](−1)[d]K[a,b,c,d]X[c,d]

≈ X[b,d](−1)[c](−1)[d]K[a,b,c,d]X[c,d]

≈ X[b,d]K[a,b,c,d]X[a,c]X[b,d]X[c,d]

≈ K[a,b,c,d]X[c,d]X[a,c]X[b,d]X[c,d]

≈ K[a,b,c,d]X[c,d]X[a,c]X[c,d]X[c,d]X[b,d]X[c,d]

≈ K[a,b,c,d]X[a,d]X[b,c].

For Relation (9g), using Relation (9f), we have

(−1)[a](−1)[b](−1)[c](−1)[d]K[a,b,c,d] ≈ (−1)[a](−1)[b]K[a,b,c,d]X[a,c]X[b,d]

≈ X[a,c]X[b,d](−1)[c](−1)[d]X[a,c]X[b,d]K[a,b,c,d]X[a,c]X[b,d]

≈ X[a,c]X[b,d](−1)[c](−1)[d]K[a,b,c,d](−1)[c](−1)[d]X[a,c]X[b,d]

≈ X[a,c]X[b,d]K[a,b,c,d]X[a,c]X[b,d](−1)[c](−1)[d]X[a,c]X[b,d]

≈ X[a,c]X[b,d]K[a,b,c,d](−1)[a](−1)[b]

≈ K[a,b,c,d](−1)[a](−1)[b](−1)[c](−1)[d].

For Relation (9b), using Relations (9e) and (9g) and multiplying the right-hand side by

(−1)[a](−1)[b](−1)[c](−1)[d](−1)[a](−1)[b](−1)[c](−1)[d]

we get

(−1)[a](−1)[c]K[a,b,c,d] ≈ (−1)[b](−1)[d]K[a,b,c,d](−1)[a](−1)[b](−1)[c](−1)[d]

≈ K[a,b,c,d]X[a,b]X[c,d](−1)[a](−1)[b](−1)[c](−1)[d].
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For Relation (9a), using Relations (9f) and (9g) and multiplying the right-hand side by

(−1)[a](−1)[b](−1)[c](−1)[d](−1)[a](−1)[b](−1)[c](−1)[d]

we get

(−1)[a](−1)[b]K[a,b,c,d] ≈ (−1)[c](−1)[d]K[a,b,c,d](−1)[a](−1)[b](−1)[c](−1)[d]

≈ K[a,b,c,d]X[a,c]X[b,d](−1)[a](−1)[b](−1)[c](−1)[d].

For Relation (9c), using Relations (9d) and (9g) and multiplying the right-hand side by

(−1)[a](−1)[b](−1)[c](−1)[d](−1)[a](−1)[b](−1)[c](−1)[d]

we get

(−1)[a](−1)[d]K[a,b,c,d] ≈ (−1)[b](−1)[c]K[a,b,c,d](−1)[a](−1)[b](−1)[c](−1)[d]

≈ K[a,b,c,d]X[a,d]X[b,c](−1)[a](−1)[b](−1)[c](−1)[d].

Corollary A.13. Let W be a word over G of the form

K[a,b,c,d](−1)τa[a](−1)τb[b](−1)τc[c](−1)τd[d]K[a,b,c,d]

where τa, τb, τc, τd ∈ Z2 and evenly many of τa, τb, τc, τd ∈ Z2 are even. Then there exists a word V
over {(−1)[x], X[y,z] | x, y, z ∈ {a, b, c, d}} such that V ≈W .

Proof. By Relations (4a) and (4c) and Proposition A.12.

Corollary A.14. Let W be a word over G of the form

K[a,b,c,d](−1)τa[a](−1)τb[b](−1)τc[c](−1)τd[d]K[a,b,c,d](−1)
τ ′a
[a](−1)

τ ′b
[b](−1)

τ ′c
[c](−1)

τ ′d
[d]K[a,b,c,d]

where τa, τb, τc, τd, τ
′
a, τ
′
b, τ
′
c, τ
′
d ∈ Z2 oddly many of τa, τb, τc, τd ∈ Z2 are even, and oddly many of

τ ′a, τ
′
b, τ
′
c, τ
′
d ∈ Z2 are even. Then there exists a word V over {(−1)[x], X[y,z] | x, y, z ∈ {a, b, c, d}}

such that V ≈W .

Proof. First note that by multiplying by

(−1)[a](−1)[b](−1)[c](−1)[d](−1)[a](−1)[b](−1)[c](−1)[d]

if required, we can ensure that exactly one of τa, τb, τc, or τd is odd, and similarly for for τ ′a, τ
′
b, τ
′
c,

or τ ′d. Moreover, conjugating the left occurrence of (−1) by X[a,x] and commuting both Xs, we can
ensure that the left occurrence of (−1) is of the form (−1)[a]. Therefore, we can assume without
loss of generality that W is of the form

K[a,b,c,d](−1)[a]K[a,b,c,d](−1)[x]K[a,b,c,d]

for some x ∈ {a, b, c, d}. If x = a we can conclude by Relation (4b). If x = b we have

K[a,b,c,d](−1)[a]K[a,b,c,d](−1)[b]K[a,b,c,d]

≈ K[a,b,c,d](−1)[a]K[a,b,c,d](−1)[b]X[a,b]X[a,b]K[a,b,c,d]

≈ K[a,b,c,d](−1)[a]K[a,b,c,d]X[a,b](−1)[a]X[a,b]K[a,b,c,d]

≈ K[a,b,c,d](−1)[a](−1)[d](−1)[b]X[b,d]K[a,b,c,d](−1)[a]K[a,b,c,d]X[b,d](−1)[b](−1)[d]

≈ X[a,b]K[a,b,c,d](−1)[a]K[a,b,c,d](−1)[a]K[a,b,c,d]X[b,d](−1)[b](−1)[d]
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so that this case reduces to the case of x = a. Similarly, if x = c

K[a,b,c,d](−1)[a]K[a,b,c,d](−1)[c]K[a,b,c,d] ≈ K[a,b,c,d](−1)[a]K[a,b,c,d](−1)[b]X[b,c]X[b,c]K[a,b,c,d]

≈ X[b,c]K[a,b,c,d](−1)[a]K[a,b,c,d](−1)[b]K[a,b,c,d]X[b,c]

and if x = d

K[a,b,c,d](−1)[a]K[a,b,c,d](−1)[d]K[a,b,c,d] ≈ K[a,b,c,d](−1)[a]K[a,b,c,d](−1)[b]X[b,d]X[b,d]K[a,b,c,d]

≈ X[b,d]K[a,b,c,d](−1)[a]K[a,b,c,d](−1)[b]K[a,b,c,d]X[c,d].

Proposition A.15. Let G be one of the words below.

1. K[1,3,c,d](−1)
τ ′1
[1](−1)

τ ′3
[3](−1)τc[c](−1)τd[d]K[1,2,3,4](−1)τd[d](−1)τc[c](−1)τ2[2](−1)τ1[1]K[1,2,c,d]

2. K[2,4,c,d](−1)
τ ′2
[2](−1)

τ ′4
[4](−1)τc[c](−1)τd[d]K[1,2,3,4](−1)τd[d](−1)τc[c](−1)τ2[2](−1)τ1[1]K[1,2,c,d]

3. K[1,2,c,d](−1)
τ ′1
[1](−1)

τ ′2
[2](−1)τc[c](−1)τd[d]K[1,2,3,4](−1)τd[d](−1)τc[c](−1)τ3[3](−1)τ1[1]K[1,3,c,d]

4. K[3,4,c,d](−1)
τ ′3
[3](−1)

τ ′4
[4](−1)τc[c](−1)τd[d]K[1,2,3,4](−1)τd[d](−1)τc[c](−1)τ3[3](−1)τ1[1]K[1,3,c,d]

5. K[1,4,c,d](−1)
τ ′1
[1](−1)

τ ′4
[4](−1)τc[c](−1)τd[d]K[1,2,3,4](−1)τd[d](−1)τc[c](−1)τ4[4](−1)τ1[1]K[1,4,c,d]

6. K[2,3,c,d](−1)
τ ′2
[2](−1)

τ ′3
[3](−1)τc[c](−1)τd[d]K[1,2,3,4](−1)τd[d](−1)τc[c](−1)τ4[4](−1)τ1[1]K[1,4,c,d]

7. K[1,4,c,d](−1)
τ ′1
[1](−1)

τ ′4
[4](−1)τc[c](−1)τd[d]K[1,2,3,4](−1)τd[d](−1)τc[c](−1)τ3[3](−1)τ2[2]K[2,3,c,d]

8. K[2,3,c,d](−1)
τ ′2
[2](−1)

τ ′3
[3](−1)τc[c](−1)τd[d]K[1,2,3,4](−1)τd[d](−1)τc[c](−1)τ3[3](−1)τ2[2]K[2,3,c,d]

9. K[1,2,c,d](−1)
τ ′1
[1](−1)

τ ′2
[2](−1)τc[c](−1)τd[d]K[1,2,3,4](−1)τd[d](−1)τc[c](−1)τ4[4](−1)τ2[2]K[2,4,c,d]

10. K[3,4,c,d](−1)
τ ′3
[3](−1)

τ ′4
[4](−1)τc[c](−1)τd[d]K[1,2,3,4](−1)τd[d](−1)τc[c](−1)τ4[4](−1)τ2[2]K[2,4,c,d]

11. K[1,3,c,d](−1)
τ ′1
[1](−1)

τ ′3
[3](−1)τc[c](−1)τd[d]K[1,2,3,4](−1)τd[d](−1)τc[c](−1)τ4[4](−1)τ3[3]K[3,4,c,d]

12. K[2,4,c,d](−1)
τ ′2
[2](−1)

τ ′4
[4](−1)τc[c](−1)τd[d]K[1,2,3,4](−1)τd[d](−1)τc[c](−1)τ4[4](−1)τ3[3]K[3,4,c,d]

Then there exists words V and W over {(−1)[x], X[x,y]}, with x, y ∈ {1, 2, 3, 4, c, d}, such that

G ≈ V K[1,2,3,4,]W .

Proof. Let G be one of the words above. Then G has the form

K[α,β,c,d](−1)τα[α](−1)
τβ
[β](−1)τc[c](−1)τd[d]K[1,2,3,4](−1)τd[d](−1)τc[c](−1)

τγ
[γ](−1)τδ[δ]K[δ,γ,c,d]

for appropriate indices α, β, γ, and δ. We want to show that there exists V and W over
{(−1)[x], X[x,y]}, G ≈ V K[1,2,3,4]W . By Proposition A.12, evenly many occurrences of (−1) can be
commuted passed K. Since K[1,2,3,4] ≈ (−1)[c]K[1,2,3,4](−1)[c], we can thus assume without loss of
generality that G is in fact of the form

K[α,β,c,d](−1)[α]K[1,2,3,4]K[δ,γ,c,d] or K[α,β,c,d](−1)[β]K[1,2,3,4]K[δ,γ,c,d].

Using this simplification, we illustrate the rewriting strategy for the first two words.
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1. In this case, without loss of generality, G is either K[1,3,c,d](−1)[1]K[1,2,3,4]K[1,2,c,d] or
K[1,3,c,d](−1)[3]K[1,2,3,4]K[1,2,c,d]. By Propositions A.11 and A.12, in the first case we get

G ≈ K[1,3,c,d](−1)[1]K[1,2,3,4]K[1,2,c,d]

≈ (−1)[2]K[1,3,c,d](−1)[1](−1)[2]K[1,2,3,4]K[1,2,c,d]

≈ (−1)[2]K[1,3,c,d]K[1,2,3,4]X[1,3]X[2,4](−1)[1](−1)[2](−1)[3](−1)[4]K[1,2,c,d]

≈ V K[1,3,c,d]K[1,2,3,4]K[3,4,c,d]W .

And in the second case we get

G ≈ K[1,3,c,d](−1)[3]K[1,2,3,4]K[1,2,c,d]

≈ (−1)[4]K[1,3,c,d](−1)[3](−1)[4]K[1,2,3,4]K[1,2,c,d]

≈ (−1)[4]K[1,3,c,d]K[1,2,3,4]X[1,3]X[2,4]K[1,2,c,d]

≈ V K[1,3,c,d]K[1,2,3,4]K[3,4,c,d]W .

Hence, to complete the proof it suffices to show that K[1,3,c,d]K[1,2,3,4]K[3,4,c,d] can be
written in the desired form. This is a consequence of Relation (5a) since

K[1,3,c,d]K[1,2,3,4]K[3,4,c,d] ≈ X[1,2]X[1,2]X[3,4]X[3,4]K[1,3,c,d]K[1,2,3,4]K[3,4,c,d]

≈ X[1,2]X[3,4]K[2,4,c,d]X[1,2]X[3,4]K[1,2,3,4]K[3,4,c,d]

≈ X[1,2]X[3,4]K[2,4,c,d]K[1,2,3,4](−1)[3](−1)[4]K[3,4,c,d]

≈ V K[2,4,c,d]K[1,2,3,4]K[3,4,c,d]W .

2. In this case, without loss of generality, G is either K[2,4,c,d](−1)[2]K[1,2,3,4]K[1,2,c,d] or
K[2,4,c,d](−1)[4]K[1,2,3,4]K[1,2,c,d]. By Propositions A.11 and A.12, in the first case we get

G ≈ K[2,4,c,d](−1)[2]K[1,2,3,4]K[1,2,c,d]

≈ (−1)[1]K[2,4,c,d](−1)[1](−1)[2]K[1,2,3,4]K[1,2,c,d]

≈ (−1)[1]K[2,4,c,d]K[1,2,3,4]X[1,3]X[2,4](−1)[1](−1)[2](−1)[3](−1)[4]K[1,2,c,d]

≈ V K[2,4,c,d]K[1,2,3,4]K[3,4,c,d]W .

And in the second case we get

G ≈ K[2,4,c,d](−1)[4]K[1,2,3,4]K[1,2,c,d]

≈ (−1)[3]K[2,4,c,d](−1)[3](−1)[4]K[1,2,3,4]K[1,2,c,d]

≈ (−1)[3]K[2,4,c,d]K[1,2,3,4]X[1,3]X[2,4]K[1,2,c,d]

≈ V K[2,4,c,d]K[1,2,3,4]K[3,4,c,d]W .

Hence, to complete the proof it suffices to show that K[2,4,c,d]K[1,2,3,4]K[3,4,c,d] can be
written in the desired form, which follows directly from Relation (5a).

The remaining cases are treated similarly.
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Proposition A.16. The relation below is derivable.

K[e,f,g,h]K[a,b,c,d]X[d,e]K[a,b,c,d]K[e,f,g,h]

≈
(−1)[a](−1)[h]X[a,h]K[e,f,g,h]K[a,b,c,d]X[d,e]K[a,b,c,d]K[e,f,g,h]X[a,h](−1)[a](−1)[h]

Proof. Using Relations (6a) and (8b), we get:

K[e,f,g,h]K[a,b,c,d]K[a,b,c,e]K[d,f,g,h]X[a,h](−1)[a](−1)[h]

≈ X[e,h]X[e,h]K[e,f,g,h]K[a,b,c,d]K[a,b,c,e]K[d,f,g,h]X[a,h](−1)[a](−1)[h]

≈ X[e,h]K[e,f,g,h]X[f,h]X[g,h]X[f,h](−1)[f ](−1)[g]K[a,b,c,d]K[a,b,c,e]K[d,f,g,h]X[a,h](−1)[a](−1)[h]

≈ X[e,h]K[e,f,g,h]K[a,b,c,d]K[a,b,c,e]X[f,h]X[g,h]X[f,h](−1)[f ](−1)[g]K[d,f,g,h]X[a,h](−1)[a](−1)[h]

≈ X[e,h]K[e,f,g,h]K[a,b,c,d]K[a,b,c,e]X[f,g](−1)[f ](−1)[g]K[d,f,g,h]X[a,h](−1)[a](−1)[h]

≈ X[e,h]K[e,f,g,h]K[a,b,c,d]K[a,b,c,e]K[d,f,g,h]X[d,h]X[a,h](−1)[a](−1)[h]

≈ X[e,h]K[e,f,g,h]K[a,b,c,d]K[a,b,c,e]K[d,f,g,h](−1)[a](−1)[d]X[d,h]X[a,h]

≈ X[e,h]K[e,f,g,h]K[a,b,c,d]K[a,b,c,e]K[d,f,g,h]X[a,d]X[a,d](−1)[a](−1)[d]X[d,h]X[a,h]

≈ X[e,h]K[e,f,g,h]K[a,b,c,d]K[a,b,c,e]K[d,f,g,h]X[a,d](−1)[a](−1)[d]X[a,d]X[d,h]X[a,h]

≈ X[e,h]K[e,f,g,h]K[a,b,c,d]K[a,b,c,e]K[d,f,g,h]X[a,d](−1)[a](−1)[d]X[d,h]

≈ X[e,h]X[a,e](−1)[a](−1)[e]K[e,f,g,h]K[a,b,c,d]K[a,b,c,e]K[d,f,g,h]X[d,h]

≈ X[e,h]X[a,e](−1)[a](−1)[e]K[e,f,g,h]K[a,b,c,d]K[a,b,c,e](−1)[f ](−1)[g]X[f,g]K[d,f,g,h]

≈ X[e,h]X[a,e](−1)[a](−1)[e]K[e,f,g,h](−1)[f ](−1)[g]X[f,g]K[a,b,c,d]K[a,b,c,e]K[d,f,g,h]

≈ X[e,h]X[a,e](−1)[a](−1)[e]X[e,h]K[e,f,g,h]K[a,b,c,d]K[a,b,c,e]K[d,f,g,h]

≈ X[e,h]X[a,e]X[e,h](−1)[a](−1)[h]K[e,f,g,h]K[a,b,c,d]K[a,b,c,e]K[d,f,g,h]

≈ X[a,h](−1)[a](−1)[h]K[e,f,g,h]K[a,b,c,d]K[a,b,c,e]K[d,f,g,h].

A.3 Basic and Simple Edges

Definition A.17. The subset G′n ⊆ Gn is defined as

G′n = {X[a,a+1],K[1,2,3,4], (−1)[1] | 1 ≤ a ≤ n− 1}. (11)

The elements of G′n are called basic generators and an edge G : s→ t is called a basic edge if G is
basic.

Definition A.18. Let G ∈ Gn. The extent of G is the largest subscript appearing in G. That
is, extent(X[a,b]) = b, extent(K[a,b,c,d]) = d, and extent((−1)[a]) = a. The extent of a sequence
G = G1 · · ·Gn is max{extent(Gi); 1 ≤ i ≤ n}.

Lemma A.19. For any simple edge G, there exists a sequence of basic edges G′ such that

1. G′ ≈ G,
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2. extent(G′) = extent(G), and

3. level(G′) = level(G).

Proof. See [8].

A.4 The Proof

We start with a version of the Main Lemma for basic edges, from which the full version of the Main
Lemma will follow.

Lemma A.20. Let s, t, and r be states, N : s ⇒ t be a normal edge, and G : s → r be a basic
edge. Then there exists a state q, a sequence of normal edges N∗ : r ⇒ q, and a sequence of simple
edges G∗ : t→ q such that the diagram

s r

t q

N

G

N∗

G∗

commutes equationally and level(G∗) < level(s).

Proof. We proceed by case distinction. Since r, t and N are uniquely determined by G and s, it
suffices to distinguish cases based on the pair (G, s). Let vs and vr be the pivot columns of s and
r, respectively. Let level(s) = (j, k,m), where j is the index of vs in s, k = lde(vs), and m is the
number of odd entries in 2kvs. We consider the cases G = X[x,x+1], G = (−1)[1], and G = K[1,2,3,4]

in turn. For each choice of G, we distinguish further subcases depending on whether k = 0 or
k > 0. Figure 1 represents the first three levels of the case distinction.

Case 1. G = X[x,x+1].

Subcase 1.1. k = 0. Then vs = (−1)τaea, where τa ∈ Z2 and 1 ≤ a ≤ j. We now consider the
cases j ≤ x and j > x in turn. For each choice of j we distinguish further subcases corresponding
to different values of a.

Subcase 1.1.1. j ≤ x. Then X[x,x+1] acts non-trivially on the previously fixed columns and this
case is therefore retrograde.

Subcase 1.1.2. j > x.

Subcase 1.1.2.1. a /∈ {x, x+ 1}. Then vr = vs. Hence, level(r) = level s and, from both s and r,
the algorithm prescribes X[a,j](−1)τa[a]. We complete the resulting diagrams as follows, depending

on whether x+ 1 = j (left) or x+ 1 < j (right).

s r

t q

X[a,x+1](−1)
τa
[a]

X[x,x+1]

X[a,x+1](−1)
τa
[a]

X[a,x]

s r

t q

X[a,j](−1)
τa
[a]

X[x,x+1]

X[a,j](−1)
τa
[a]

X[x,x+1]
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•

G = X[x,x+1]

k = 0

k > 0

|{a, b, c, d} ∩ {x, x+ 1}| = 0

|{a, b, c, d} ∩ {x, x+ 1}| = 1

|{a, b, c, d} ∩ {x, x+ 1}| = 2

G = (−1)[1]

k = 0

k > 0

a = 1

a > 1

G = K[1,2,3,4]

k = 0

a = 1

a = 2

a = 3

a = 4

a > 4

k > 0

|{a, b, c, d} ∩ {1, 2, 3, 4}| = 0

|{a, b, c, d} ∩ {1, 2, 3, 4}| = 1

|{a, b, c, d} ∩ {1, 2, 3, 4}| = 2

|{a, b, c, d} ∩ {1, 2, 3, 4}| = 3

|{a, b, c, d} ∩ {1, 2, 3, 4}| = 4

Figure 1: The case distinction.
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The diagrams commute by Relations (2b), (3a) and (3b) since

X[a,x+1](−1)[a]X[x,x+1] ≈ X[a,x+1]X[x,x+1](−1)[a] ≈ X[x,x+1]X[a,x](−1)[a] ≈ X[a,x]X[a,x+1](−1)[a]

and

X[a,j](−1)[a]X[x,x+1] ≈ X[a,j]X[x,x+1](−1)[a] ≈ X[x,x+1]X[a,j](−1)[a] ≈ X[a,x]X[a,x+1](−1)[a].

Moreover, the level property is satisfied since level(t), level(q) < level(s).

Subcase 1.1.2.2. a ∈ {x, x+1}. Then X[x,x+1] acts non-trivially on vs and so vr 6= vs. If j = x+1,
then the diagram to complete is one of the diagrams below, depending on whether a = x (left) or
a = x+ 1 (right).

s r

t q

X[a,j](−1)
τa
[a]

X[x,x+1]

(−1)τa
[j]

s r

t q

(−1)τa
[a]

X[x,x+1]

X[x,a](−1)
τa
[x]

We then complete the diagrams as follows.

s r

t q

X[x,x+1](−1)
τa
[x]

X[x,x+1]

(−1)τa
[x+1]

ε

s r

t q

(−1)τa
[x+1]

X[x,x+1]

X[x,x+1](−1)
τa
[x]

ε

The diagrams commute by Relation (3c) and Relations (1a) and (3c), respectively.Moreover, the
level property is satisfied since we have level(q) = level(t) < level(s) in both cases. Now if j > x+1,
then the diagram to complete is one of the diagrams below, depending on whether a = x (left) or
a = x+ 1 (right).

s r

t q

X[x,j](−1)
τa
[x]

X[x,x+1]

X[x+1,j](−1)
τa
[x+1]

s r

t q

X[x+1,j](−1)
τa
[x+1]

X[x,x+1]

X[x,j](−1)
τa
[x]

We then complete the diagrams as follows.

s r

t q

X[x,j](−1)
τa
[x]

X[x,x+1]

X[x+1,j](−1)
τa
[x+1]

X[x,x+1]

s r

t q

X[x+1,j](−1)
τa
[x+1]

X[x,x+1]

X[x,j](−1)
τa
[x]

X[x,x+1]

Both diagrams commute by Relations (3a) and (3c) and the level property is satisfied since we have
level(t) < level(s) and level(q) < level(s) in both cases.
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Subcase 1.2. k > 0. Let u = 2kvs and let a, b, c, d be the indices of the first four odd entries of u.
In this case, N is of the form

K[a,b,c,d](−1)τa[a](−1)τb[b](−1)τc[c](−1)τd[d],

where τa, τb, τc, τd ∈ Z2. We have |{a, b, c, d}∩ {x, x+ 1}| ∈ {0, 1, 2}. We consider each one of these
cases in turn.

Subcase 1.2.1. |{a, b, c, d} ∩ {x, x + 1}| = 0. If x + 1 ≤ j, then X[x,x+1] acts trivially on the
previously fixed columns and doesn’t affect the number of odd entries in u. Hence level(r) = level(s)
and the first four odd entries in the integral part of vr also have indices a, b, c, and d. Thus the
diagram to complete is the one shown below.

s r

t q

K[a,b,c,d](−1)
τa
[a]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[d]

X[x,x+1]

K[a,b,c,d](−1)
τa
[a]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[d]

We then complete the diagram as follows.

s r

t q

K[a,b,c,d](−1)
τa
[a]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[d]

X[x,x+1]

K[a,b,c,d](−1)
τa
[a]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[d]

X[x,x+1]

The diagram commutes by Relations (2b) and (2c). Moreover, the level property is satisfied since
level(t) < level(s) and level(q) < level(r) = level(s). Now if x + 1 > j, then X[x,x+1] acts non-
trivially on the previously fixed columns and the case is retrograde.

Subcase 1.2.2. |{a, b, c, d} ∩ {x, x+ 1}| = 1.

Subcase 1.2.2.1. |{a, b, c}∩{x, x+1}| = 1. Then x+1 < d and there are six subcases to consider,
depending on whether x ∈ {a, b, c} or x + 1 ∈ {a, b, c}. These cases can be uniformly represented
by the diagram

s r

t q

K[a,b,c,d](−1)
τa
[a]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[d]

X[x,x+1]

K[a′,b′,c′,d](−1)
τa′
[a′](−1)

τb′
[b′](−1)

τc′
[c′](−1)

τd
[d]

where, for an index p ∈ {a, b, c}, we have p′ = x if p = x+ 1 and p′ = x+ 1 if p = x. We can then
complete the diagram as follows.

s r

t q

K[a,b,c,d](−1)
τa
[a]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[d]

X[x,x+1]

K[a′,b′,c′,d](−1)
τa′
[a′](−1)

τb′
[b′](−1)

τc′
[c′](−1)

τd
[d]

X[x,x+1]
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The diagram commutes by Relations (2b), (3c), (3d), (3e), (3f) and (3g) and the level property is
satisfied since x + 1 < d implies that level(r) = level(s) and therefore that level(t) < level(s) and
level(q) < level(r) = level(s).

Subcase 1.2.2.2. d = x+ 1. This case is similar to the previous one and the completed diagram
is given below.

s r

t q

K[a,b,c,x+1](−1)
τa
[a]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[d]

X[x,d]

K[a,b,c,x](−1)
τa
[a]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[x]

X[x,d]

To see that the diagram commutes and that the level property is satisfied, one can reason as in
Subcase 1.2.2.1.

Subcase 1.2.2.3. d = x. Let e = d+ 1 and let ue be the e-th component of u. If ue is even, then
the indices of the first four odd entries of the integral part of vr are a, b, c, and e. We can then
reason as Subcase 1.2.2.1, using the completed diagram below.

s r

t q

K[a,b,c,d](−1)
τa
[a]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[d]

X[d,e]

K[a,b,c,e](−1)
τa
[a]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[e]

X[d,e]

If ue is odd, then the indices of the first four odd entries of the integral part of vr are a, b, c, and
d, and the diagram to complete is the one given below.

s r

t q

K[a,b,c,d](−1)
τa
[a]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[d]

X[d,e]

K[a,b,c,d](−1)
τa
[a]

(−1)τb
[b]

(−1)τc
[c]

(−1)τe
[d]

In this case, there are at least two quadruples of odd entries in u. Let f , g, and h be the indices
of the first three odd entries of u after e and write u for the vector composed of the first eight odd
entries of u. Then, by Lemma A.8, we have uᵀu ≡ 0 (mod 16) or uᵀu ≡ 8 (mod 16). We consider
both of these cases in turn.
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Subcase 1.2.2.3.1. uᵀu ≡ 0 (mod 16). Then we consider the diagram below.

s r

t q

t1 q1

t2 q2

t3 q3

t4 q4

K[a,b,c,d](−1)
τa
[a]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[d]

X[d,e]

K[a,b,c,d](−1)
τa
[a]

(−1)τb
[b]

(−1)τc
[c]

(−1)τe
[d]

K[e,f,g,h](−1)
τe
[e]

(−1)
τf
[f ]

(−1)τg
[g]

(−1)τh
[h] K[e,f,g,h](−1)

τd
[e]

(−1)
τf
[f ]

(−1)τg
[g]

(−1)τh
[h]

(−1)[a](−1)[e]X[a,e] (−1)[a](−1)[e]X[a,e]

K[a,b,c,d] K[a,b,c,d]

K[e,f,g,h] K[e,f,g,h]

X[d,e]

To see that the diagram commutes, note that the occurrences of (−1) in the top part of the diagram
can be commuted past X and K and cancelled, using Relations (1b), (2b), (2d) and (2e). The
fact that the diagram commutes is then a consequence of Relation (6a). We now verify that the
diagram satisfies the level property. The first two edges descending from s are prescribed by the
algorithm. Thus

K[a,b,c,d](−1)τa[a](−1)τb[b](−1)τc[c](−1)τd[d]u = w

with w ≡ 00001111 (mod 2), so that level(t1) ≤ (j, k,m− 1) < level(s). Similarly,

K[e,f,g,h](−1)τe[e](−1)
τf
[f ](−1)

τg
[g](−1)τh[h]w = w1

with w1 ≡ 00000000 (mod 2) so that level(t1) ≤ (j, k,m− 2) < level(s). Moreover, by Lemma A.9,
we know that w1 = 2w′1 with w′1 ≡ 10000111 (mod 2) or w′1 ≡ 01111000 (mod 2). Hence,

(−1)[a](−1)[e]X[a,e]w1 = w2

with w2 = 2w′2 and w′2 ≡ 00001111 (mod 2) or w′2 ≡ 11110000 (mod 2). Thus level(t2) =
level(t1) ≤ (j, k,m− 2) < level(s). By Lemma A.1, we have

K[a,b,c,d]w2 = w3 and K[e,f,g,h]w3 = w4

with w3 = 2w′3 and w4 = 2w′4 for some w′3, w
′
4 ∈ Z8. Hence, we get

level(t4), level(t3) ≤ level(t2) < level(s).

We can reason analogously with the right hand side of the diagram to show that

level(q4), level(q3), level(q2), level(q1), level(q), level(r) < level(s).

This proves that the diagram satisfies the level property.
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Subcase 1.2.2.3.2. uᵀu ≡ 8 (mod 16). Then we consider the diagram below.

s r

t q

t1 q1

t2 q2

t3 q3

t4 q4

K[a,b,c,d](−1)
τa
[a]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[d]

X[d,e]

K[a,b,c,d](−1)
τa
[a]

(−1)τb
[b]

(−1)τc
[c]

(−1)τe
[d]

K[e,f,g,h](−1)
τe
[e]

(−1)
τf
[f ]

(−1)τg
[g]

(−1)τh
[h] K[e,f,g,h](−1)

τd
[e]

(−1)
τf
[f ]

(−1)τg
[g]

(−1)τh
[h]

(−1)[a](−1)[h]X[a,h] (−1)[a](−1)[h]X[a,h]

K[a,b,c,d] K[a,b,c,d]

K[e,f,g,h] K[e,f,g,h]

X[d,e]

To see that the diagram commutes, note that the occurrences of (−1) in the top part of the diagram
can be commuted past X and K and cancelled, using Relations (1b), (2b), (2d) and (2e). The fact
that the diagram commutes is then a consequence of Proposition A.16. We now verify that the
diagram satisfies the level property. The first two edges descending from s are prescribed by the
algorithm. Thus

K[a,b,c,d](−1)τa[a](−1)τb[b](−1)τc[c](−1)τd[d]u = w

with w ≡ 00001111 (mod 2), so that level(t1) ≤ (j, k,m− 1) < level(s). Similarly,

K[e,f,g,h](−1)τe[e](−1)
τf
[f ](−1)

τg
[g](−1)τh[h]w = w1

with w1 ≡ 00000000 (mod 2) so that level(t1) ≤ (j, k,m−2) < level(s). Moreover, by Lemma A.10,
we know that w1 = 2w′1 with w′1 ≡ 10001000 (mod 2) or w′1 ≡ 01110111 (mod 2). Hence,

(−1)[a](−1)[h]X[a,h]w1 = w2

with w2 = 2w′2 and w′2 ≡ 00001001 (mod 2) or w′2 ≡ 11110110 (mod 2). Thus level(t2) =
level(t1) ≤ (j, k,m− 2) < level(s). By Lemma A.1, we have

K[a,b,c,d]w2 = w3 and K[e,f,g,h]w3 = w4

with w3 = 2w′3 and w4 = 2w′4 for some w′3, w
′
4 ∈ Z8. Hence, we get

level(t4), level(t3) ≤ level(t2) < level(s).

We can reason analogously with the right hand side of the diagram to show that

level(q4), level(q3), level(q2), level(q1), level(q), level(r) < level(s).

This proves that the diagram satisfies the level property.
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Subcase 1.2.3. |{a, b, c, d}∩{x, x+ 1}| = 2. Then the diagram to complete is one of the diagrams
below, depending on whether {x, x+ 1} = {a, b} (top), {x, x+ 1} = {b, c} (center), or {x, x+ 1} =
{c, d} (bottom).

s r

t q

K[a,b,c,d](−1)
τa
[a]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[d]

X[a,b]

K[a,b,c,d](−1)
τb
[a]

(−1)τa
[b]

(−1)τc
[c]

(−1)τd
[d]

s r

t q

K[a,b,c,d](−1)
τa
[a]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[d]

X[b,c]

K[a,b,c,d](−1)
τa
[a]

(−1)τc
[b]

(−1)τb
[c]

(−1)τd
[d]

s r

t q

K[a,b,c,d](−1)
τa
[a]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[d]

X[c,d]

K[a,b,c,d](−1)
τa
[a]

(−1)τb
[b]

(−1)τd
[c]

(−1)τc
[d]

We then complete the diagrams as follows.

s r

t q

K[a,b,c,d](−1)
τa
[a]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[d]

X[a,b]

K[a,b,c,d](−1)
τb
[a]

(−1)τa
[b]

(−1)τc
[c]

(−1)τd
[d]

(−1)[d](−1)[b]X[b,d]

s r

t q

K[a,b,c,d](−1)
τa
[a]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[d]

X[b,c]

K[a,b,c,d](−1)
τa
[a]

(−1)τc
[b]

(−1)τb
[c]

(−1)τd
[d]

X[b,c]

s r

t q

K[a,b,c,d](−1)
τa
[a]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[d]

X[c,d]

K[a,b,c,d](−1)
τa
[a]

(−1)τb
[b]

(−1)τd
[c]

(−1)τc
[d]

X[b,d]

The diagrams commute by Relations (2b), (2d), (3c), (4a), (4c) and (8c). Moreover, the level
property is satisfied in the three diagrams since the level of s is unaffected by X[x,x+1] so that
level(t) < level(s) and level(q) < level(r) = level(s).

Case 2. G = (−1)[1].
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Subcase 2.1. k = 0. Then vs = (−1)τaea, where τa ∈ Z2 and 1 ≤ a ≤ j. We now consider the
cases a = 1 and a > 1 in turn. For each choice of a we distinguish further subcases corresponding
to different values of j.

Subcase 2.1.1. a = 1.

Subcase 2.1.1.1. j = 1. Then τa = 1, r = I, and the completed diagram is given below.

s r

t q

(−1)[1]

(−1)[1]

ε

ε

The diagram commutes since ≈ is reflexive and the level property is satisfied since level(t) =
level(q) < level(s).

Subcase 2.1.1.2. j > 1. Then vr = (−1)τa+1e1 and the completed diagram is given below.

s r

t q

X[1,j](−1)
τa
[1]

(−1)[1]

X[1,j](−1)
τa+1
[1]

ε

The diagram commutes by Relation (1b) and the level property is satisfied since level(t) = level(q) <
level(s).

Subcase 2.1.2. a > 1.

Subcase 2.1.2.1. j = a. Then (−1)[1] acts trivially on vs and so vr = vs. Hence, the completed
diagram is given below.

s r

t q

(−1)τa
[a]

(−1)[1]

(−1)τa
[a]

(−1)[1]

The diagram commutes by Relation (2d) and the level property is satisfied since level(t) < level(s)
and level(q) < level(r) = level(s).

Subcase 2.1.2.2. j > a. Then (−1)[1] acts trivially on vs and so vr = vs. Hence, the completed
diagram is given below.

s r

t q

X[a,j](−1)
τa
[a]

(−1)[1]

X[a,j](−1)
τa
[a]

(−1)[1]

The diagram commutes by Relations (2b) and (2d) and the level property is satisfied since level(t) <
level(s) and level(q) < level(r) = level(s).
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Subcase 2.2. k > 0. Let u = 2kvs and let a, b, c, d be the indices of the first four odd entries of u.
In this case, N is of the form

K[a,b,c,d](−1)τa[a](−1)τb[b](−1)τc[c](−1)τd[d],

where τa, τb, τc, τd ∈ Z2. We have a = 1 or a > 1. We consider each one of these cases in turn.

Subcase 2.2.1. a = 1. Then (−1)[1] acts non-trivially on vs and so vr 6= vs. Hence, the completed
diagram is given below.

s r

t q

K[1,b,c,d](−1)
τ1
[1]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[d]

(−1)[1]

K[1,b,c,d](−1)
τ1+1

[1]
(−1)τb

[b]
(−1)τc

[c]
(−1)τd

[d]

ε

The diagram commutes by Relations (1b) and (2d) and the level property is satisfied since level(t) =
level(q) < level(r) = level(s).

Subcase 2.2.2. a > 1. Then (−1)[1] does not affect the odd entries of vs. Hence, the completed
diagram is given below.

s r

t q

K[a,b,c,d](−1)
τa
[a]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[d]

(−1)[1]

K[a,b,c,d](−1)
τa
[a]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[d]

(−1)[1]

The diagram commutes by Relations (1b), (2d) and (2e) and the level property is satisfied since
level(t) = level(q) < level(r) = level(s).

Case 3. G = K[1,2,3,4].

Subcase 3.1. k = 0. Then vs = (−1)τaea, where τa ∈ Z2 and 1 ≤ a ≤ j. We now consider the
cases a = 1, a = 2, a = 3, a = 4, and a > 4 in turn. For each choice of a we distinguish further
subcases corresponding to different values of j.

Subcase 3.1.1. a = 1.

Subcase 3.1.1.1. j = 1. Then τ1 = 1. Hence, from s, the algorithm prescribes (−1)[1]. The level
of r is (4, 1, 4) and, from r, the algorithm prescribes

K[1,2,3,4](−1)[2](−1)[3], X[1,4], X[2,3], and (−1)[1].
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We complete the resulting diagram as follows.

s r

t q1

q2

q3

q4

(−1)[1]

K[1,2,3,4]

K[1,2,3,4](−1)[2](−1)[3]

ε

X[1,4]

X[2,3]

(−1)[1]

The diagram commutes by Relations (1a), (1c) and (9d) since

(−1)[1]X[2,3]X[1,4]K[1,2,3,4](−1)[2](−1)[3]K[1,2,3,4] ≈ (−1)[1]X[2,3]X[1,4]X[1,4]X[2,3]

≈ (−1)[1].

Moreover, the level property is satisfied since level(t), level(q4) < (1, 0, 0) = level(s).

Subcase 3.1.1.2. j = 2. Then, from s, the algorithm prescribes X[1,2](−1)τ1[2]. The level of r is

(4, 1, 4) and, from r, the algorithm prescribes

K[1,2,3,4](−1)[2](−1)[3], X[1,4], X[2,3], and X[1,2](−1)τ1[1].

We complete the resulting diagram as follows.

s r

t q1

q2

q3

q4

X[1,2](−1)
τ1
[1]

K[1,2,3,4]

K[1,2,3,4](−1)[2](−1)[3]

ε

X[1,4]

X[2,3]

X[1,2](−1)
τ1
[1]

The diagram commutes by reasoning as in the previous case. Moreover, the level property is
satisfied since level(t), level(q4) < (2, 0, 0) = level(s).
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Subcase 3.1.1.3. j = 3. Then, from s, the algorithm prescribes X[1,3](−1)τ1[1]. The level of r is

(4, 1, 4) and, from r, the algorithm prescribes

K[1,2,3,4](−1)[2](−1)[3], X[1,4], and X[1,3](−1)τ1[1].

We complete the resulting diagram as follows.

s r

t q1

q2

q3

X[1,3](−1)
τ1
[1]

K[1,2,3,4]

K[1,2,3,4](−1)[2](−1)[3]

X[1,2]

X[1,4]

X[1,3](−1)
τ1
[1]

The diagram commutes by Relations (1a), (1c), (3a), (3b) and (9d) since

X[1,3](−1)τ1[1]X[1,4]K[1,2,3,4](−1)[2](−1)[3]K[1,2,3,4] ≈ X[1,3](−1)τ1[1]X[1,4]X[1,4]X[2,3]

≈ X[1,3]X[2,3](−1)τ1[1]

≈ X[1,2]X[1,3](−1)τ1[1].

Moreover, the level property is satisfied since level(t), level(q3) < (3, 0, 0) = level(s).

Subcase 3.1.1.4. j = 4. Then, from s, the algorithm prescribes X[1,4](−1)τ1[1]. The level of r is

(4, 1, 4) and, from r, the algorithm prescribes

K[1,2,3,4](−1)τ1[1](−1)τ1[2](−1)τ1[3](−1)τ1[4], and X[1,4].

We complete the resulting diagram as follows.

s r

t q1

q2

X[1,4](−1)
τ1
[1]

K[1,2,3,4]

K[1,2,3,4](−1)
τ1
[1]

(−1)τ1
[2]

(−1)τ1
[3]

(−1)τ1
[4]

(−1)τ1
[1]

(−1)τ1
[2]

(−1)τ1
[3]

X[1,4]

The diagram commutes by Relations (1c), (2b), (2d), (3c) and (9g) since

X[1,4]K[1,2,3,4](−1)τ1[1](−1)τ1[2](−1)τ1[3](−1)τ1[4]K[1,2,3,4] ≈ X[1,4](−1)τ1[1](−1)τ1[2](−1)τ1[3](−1)τ1[4]

≈ (−1)τ1[1](−1)τ1[2](−1)τ1[3]X[1,4](−1)τ1[1]

Moreover, the level property is satisfied since level(t), level(q2) < (4, 0, 0) = level(s) and the extent
of (−1)τ1[1](−1)τ1[2](−1)τ1[3] is strictly less than 4.
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Subcase 3.1.1.5. j > 4. Then, from s, the algorithm prescribes X[1,j](−1)τ1[1]. The level of r is

(j, 1, 4) and, from r, the algorithm prescribes

K[1,2,3,4](−1)τ1[1](−1)τ1[2](−1)τ1[3](−1)τ1[4], and X[1,j].

We complete the resulting diagram as follows.

s r

t q1

q2

X[1,j](−1)
τ1
[1]

K[1,2,3,4]

K[1,2,3,4](−1)
τ1
[1]

(−1)τ1
[2]

(−1)τ1
[3]

(−1)τ1
[4]

(−1)τ1
[2]

(−1)τ1
[3]

(−1)τ1
[4]

X[1,j]

The diagram commutes by reasoning as in the previous case. Moreover, the level property is satisfied
since level(t), level(q2) < (j, 0, 0) = level(s) and the extent of (−1)τ1[2](−1)τ1[3](−1)τ1[4] is strictly less
than j.

Subcase 3.1.2. a = 2.

Subcase 3.1.2.1. j = 2. Then τ2 = 1. Hence, from s, the algorithm prescribes (−1)[2]. The level
of r is (4, 1, 4) and, from r, the algorithm prescribes

K[1,2,3,4](−1)[2](−1)[3], X[1,4], X[2,3] and (−1)[2].

We complete the resulting diagram as follows.

s r

t q1

q2

q3

q4

(−1)[2]

K[1,2,3,4]

K[1,2,3,4](−1)[2](−1)[3]

ε

X[1,4]

X[2,3]

(−1)[2]

The diagram commutes by Relations (1a) and (9d)

(−1)[2]X[2,3]X[1,4]K[1,2,3,4](−1)[2](−1)[3]K[1,2,3,4] ≈ (−1)[2]X[2,3]X[1,4]X[1,4]X[2,3]

≈ (−1)[2].

Moreover, the level property is satisfied since level(t), level(q4) < (2, 0, 0) = level(s).
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Subcase 3.1.2.2. j = 3. Then, from s, the algorithm prescribes X[2,3](−1)τ2[2]. The level of r is

(4, 1, 4) and, from r, the algorithm prescribes

K[1,2,3,4](−1)[2](−1)[3], X[1,4], and (−1)τ2[3].

We complete the resulting diagram as follows.

s r

t q1

q2

q3

X[2,3](−1)
τ2
[2]

K[1,2,3,4]

K[1,2,3,4](−1)[2](−1)[3]

ε

X[1,4]

(−1)τ2
[3]

The diagram commutes by Relations (1a), (3c) and (9d)

(−1)τ2[3]X[1,4]K[1,2,3,4](−1)[2](−1)[3]K[1,2,3,4] ≈ (−1)τ2[3]X[1,4]X[1,4]X[2,3]

≈ (−1)τ2[3]X[2,3]

≈ X[2,3](−1)τ2[2].

Moreover, the level property is satisfied since level(t), level(q3) < (3, 0, 0) = level(s).

Subcase 3.1.2.3. j = 4. Then, from s, the algorithm prescribes X[2,4](−1)τ2[2]. The level of r is

(4, 1, 4) and, from r, the algorithm prescribes

K[1,2,3,4](−1)τ2[1](−1)τ2+1
[2] (−1)τ2[3](−1)τ2+1

[4] , and X[1,4].

We complete the resulting diagram as follows.

s r

t q1

q2

X[2,4](−1)
τ2
[2]

K[1,2,3,4]

K[1,2,3,4](−1)
τ2
[1]

(−1)τ2+1

[2]
(−1)τ2

[3]
(−1)τ2+1

[4]

(−1)τ2
[1]

(−1)τ2
[2]

(−1)τ2
[3]
X[1,2]X[2,3]

X[1,4]

The diagram commutes by Relations (1a), (3a), (3b), (3c) and (9e). Indeed, when τ2 = 0,

X[1,4]K[1,2,3,4](−1)[2](−1)[4]K[1,2,3,4] ≈ X[1,4]X[1,2]X[3,4]

≈ X[1,2]X[2,3]X[2,4]
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and when τ2 = 1

X[1,4]K[1,2,3,4](−1)[1](−1)[3]K[1,2,3,4] ≈ X[1,4]X[1,2]X[3,4](−1)[1](−1)[2](−1)[3](−1)[4]

≈ (−1)[1](−1)[2](−1)[3]X[1,2]X[2,3]X[2,4](−1)[2].

Moreover, the level property is satisfied since level(t), level(q3) < (4, 0, 0) = level(s) and the extent
of (−1)τ2[1](−1)τ2[2](−1)τ2[3]X[1,2]X[2,3] is strictly less than 4.

Subcase 3.1.2.4. j > 4. Then, from s, the algorithm prescribes X[2,j](−1)τ2[2]. The level of r is

(4, 1, 4) and, from r, the algorithm prescribes

K[1,2,3,4](−1)τ2[1](−1)τ2+1
[2] (−1)τ2[3](−1)τ2+1

[4] , and X[1,j].

We complete the resulting diagram as follows.

s r

t q1

q2

X[2,j](−1)
τ2
[2]

K[1,2,3,4]

K[1,2,3,4](−1)
τ2
[1]

(−1)τ2+1

[2]
(−1)τ2

[3]
(−1)τ2+1

[4]

(−1)τ2
[2]

(−1)τ2
[3]

(−1)τ2
[4]
X[1,2]X[3,4]

X[1,j]

The diagram commutes by Relations (1a), (3a), (3b), (3c) and (9e). Indeed, when τ2 = 0,

X[1,j]K[1,2,3,4](−1)[2](−1)[4]K[1,2,3,4] ≈ X[1,j]X[1,2]X[3,4]

≈ X[2,j]X[1,2]X[3,4]

and when τ2 = 1

X[1,j]K[1,2,3,4](−1)[1](−1)[3]K[1,2,3,4] ≈ X[1,j]X[1,2]X[3,4](−1)[1](−1)[2](−1)[3](−1)[4]

≈ (−1)[2](−1)[3](−1)[4]X[1,2]X[3,4]X[2,j](−1)[2].

Moreover, the level property is satisfied since level(t), level(q3) < (j, 0, 0) = level(s) and the extent
of (−1)τ2[2](−1)τ2[3](−1)τ2[4]X[1,2]X[3,4] is strictly less than j.

Subcase 3.1.3. a = 3.

Subcase 3.1.3.1. j = 3. Then τa = 1. Hence, from s, the algorithm prescribes (−1)[3]. The level
of r is (4, 1, 4) and, from r, the algorithm prescribes

K[1,2,3,4](−1)[2](−1)[3] X[1,4] and X[2,3](−1)[2].
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We complete the resulting diagram as follows.

s r

t q1

q2

q3

(−1)[3]

K[1,2,3,4]

K[1,2,3,4](−1)[2](−1)[3]

ε

X[1,4]

X[2,3](−1)[2]

The diagram commutes by Relations (1a), (3c) and (9d)

X[2,3](−1)[2]X[1,4]K[1,2,3,4](−1)[2](−1)[3]K[1,2,3,4] ≈ X[2,3](−1)[2]X[1,4]X[1,4]X[2,3]

≈ (−1)[3]

Moreover, the level property is satisfied since level(t), level(q3) < (3, 0, 0) = level(s).

Subcase 3.1.3.2. j = 4. Then, from s, the algorithm prescribes X[3,4](−1)τ3[3]. The level of r is

(4, 1, 4) and, from r, the algorithm prescribes

K[1,2,3,4](−1)τ3[1](−1)τ3[2](−1)τ3+1
[3] (−1)τ3+1

[4] and X[1,4].

We complete the resulting diagrams as follows.

s r

t1 q1

t2 q2

X[3,4](−1)
τ3
[3]

K[1,2,3,4]

K[1,2,3,4](−1)
τ3
[1]

(−1)τ3
[2]

(−1)τ3+1

[3]
(−1)τ3+1

[4]

(−1)τ3
[1]

(−1)τ3
[2]

(−1)τ3
[3] X[1,4]

X[1,3]X[2,3]

The diagram commutes by Relations (1c), (2b), (2d), (3a), (3b), (9a) and (9f). Indeed, when
τ3 = 0,

X[1,4]K[1,2,3,4](−1)[3](−1)[4]K[1,2,3,4] ≈ X[1,4]X[1,3]X[2,4]

≈ X[1,3]X[2,3]X[3,4]

and when τ3 = 1

X[1,4]K[1,2,3,4](−1)[1](−1)[2]K[1,2,3,4] ≈ X[1,4]X[1,3]X[2,4](−1)[1](−1)[2](−1)[3](−1)[4]

≈ X[1,3]X[2,3](−1)[1](−1)[2](−1)[3]X[3,4](−1)[3].
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Moreover, the level property is satisfied since level(t1), level(q2) < (4, 0, 0) = level(s) and the extent
of X[1,3]X[2,3](−1)τ3[1](−1)τ3[2](−1)τ3[3] is strictly less than 4.

Subcase 3.1.3.3. j > 4. Then, from s, the algorithm prescribes X[3,j](−1)τ3[3]. The level of r is

(4, 1, 4) and, from r, the algorithm prescribes

K[1,2,3,4](−1)τ3[1](−1)τ3[2](−1)τ3+1
[3] (−1)τ3+1

[4] and X[1,j].

We complete the resulting diagrams as follows.

s r

t1 q1

t2 q2

X[3,j](−1)
τ3
[3]

K[1,2,3,4]

K[1,2,3,4](−1)
τ3
[1]

(−1)τ3
[2]

(−1)τ3+1

[3]
(−1)τ3+1

[4]

(−1)τ3
[1]

(−1)τ3
[2]

(−1)τ3
[4] X[1,j]

X[1,3]X[2,4]

The diagram commutes by Relations (1c), (2b), (2d), (3a), (3b), (9a) and (9f). Indeed, when
τ3 = 0,

X[1,j]K[1,2,3,4](−1)[3](−1)[4]K[1,2,3,4] ≈ X[1,j]X[1,3]X[2,4]

≈ X[1,3]X[2,4]X[3,j]

and when τ3 = 1

X[1,j]K[1,2,3,4](−1)[1](−1)[2]K[1,2,3,4] ≈ X[1,j]X[1,3]X[2,4](−1)[1](−1)[2](−1)[3](−1)[4]

≈ X[1,3]X[2,4](−1)[1](−1)[2](−1)[4]X[3,j](−1)[3].

Moreover, the level property is satisfied since level(t1), level(q2) < (j, 0, 0) = level(s) and the extent
of X[1,3]X[2,4](−1)τ3[1](−1)τ3[2](−1)τ3[4] is strictly less than j.

Subcase 3.1.4. a = 4.

Subcase 3.1.4.1. j = 4. Then, τa = 1. Hence, from s, the algorithm prescribes (−1)[4]. The level
of r is (4, 1, 4) and, from r, the algorithm prescribes

K[1,2,3,4](−1)[1](−1)[4] and X[1,j].

We complete the resulting diagram as follows.

s r

t1 q1

t2 q2

(−1)[4]

K[1,2,3,4]

K[1,2,3,4](−1)[1](−1)[4]

(−1)[1](−1)[2](−1)[3] X[1,4]

X[2,3]
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The diagram commutes by Relations (1a) and (9c)

X[1,4]K[1,2,3,4](−1)[1](−1)[4]K[1,2,3,4] ≈ X[1,4]X[1,4]X[2,3](−1)[1](−1)[2](−1)[3](−1)[4]

≈ X[2,3](−1)[1](−1)[2](−1)[3](−1)[4].

Moreover, the level property is satisfied since level(t1), level(q2) < (4, 0, 0) = level(s) and the extent
of X[2,3](−1)[1](−1)[2](−1)[3] is strictly less than 4.

Subcase 3.1.4.2. j > 4. Then, from s, the algorithm prescribes X[4,j](−1)τ4[4]. The level of r is

(4, 1, 4) and, from r, the algorithm prescribes

K[1,2,3,4](−1)τ4[1](−1)τ4+1
[2] (−1)τ4+1

[3] (−1)τ4[4] and X[1,j].

We complete the resulting diagrams as follows.

s r

t1 q1

t2 q2

X[4,j](−1)
τ4
[4]

K[1,2,3,4]

K[1,2,3,4](−1)
τ4
[1]

(−1)τ4+1

[2]
(−1)τ4+1

[3]
(−1)τ4

[4]

(−1)[1](−1)[2](−1)[3] X[1,j]

X[2,3]X[1,4]

The diagram commutes by Relations (1c), (2b), (2d), (3a), (3b), (9c) and (9d). Indeed, when
τ4 = 0,

X[1,j]K[1,2,3,4](−1)[2](−1)[3]K[1,2,3,4] ≈ X[1,j]X[1,4]X[2,3]

≈ X[2,3]X[1,4]X[4,j]

and when τ4 = 1

X[1,j]K[1,2,3,4](−1)[1](−1)[4]K[1,2,3,4] ≈ X[1,j]X[1,4]X[2,3](−1)[1](−1)[2](−1)[3](−1)[4]

≈ X[2,3]X[1,4](−1)[1](−1)[2](−1)[3]X[4,j](−1)[4].

Moreover, the level property is satisfied since level(t1), level(q2) < (j, 0, 0) = level(s) and the extent
of X[2,3]X[1,4](−1)[1](−1)[2](−1)[3] is strictly less than j.

Subcase 3.1.5. a > 4.

Subcase 3.1.5.1. j = a. Then, τa = 1 and vr = vs. Hence, level(r) = level(s) and, from both s
and r, the algorithm prescribes (−1)[a]. We complete the resulting diagram as follows.

s r

t q

(−1)[a]

K[1,2,3,4]

(−1)[a]

K[1,2,3,4]

The diagram commutes by Relation (2e). And the level property is satisfied since level(t), level(q) <
level(s).
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Subcase 3.1.5.2. j > a. Then, vr = vs. Hence level(r) = level(s) and, from both s and r, the
algorithm prescribes X[a,j](−1)τa[a]. We complete the resulting diagrams as follows.

s r

t q

X[a,j](−1)τ[a]

K[1,2,3,4]

X[a,j](−1)τ[a]

K[1,2,3,4]

The diagram commutes by Relations (2c) and (2e). Moreover, the level property is satisfied since
level(t), level(q) < level(s).

Subcase 3.2. k > 0. Let u = 2kvs and let a, b, c, d be the indices of the first four odd entries of u.
In this case, N is of the form

K[a,b,c,d](−1)τa[a](−1)τb[b](−1)τc[c](−1)τd[d],

where τa, τb, τc, τd ∈ Z2. We have |{a, b, c, d} ∩ {1, 2, 3, 4}| ∈ {0, 1, 2, 3, 4}. We consider each one of
these cases in turn.

Subcase 3.2.1. |{a, b, c, d} ∩ {1, 2, 3, 4}| = 0. Then 5 ≤ a < b < c < d so that u1 ≡ u2 ≡ u3 ≡
u4 ≡ 0 (mod 2). Write u for the vector composed of the first four entries of u. Then since all of
the entries of u are even and since the square of even number is either 0 or 4 modulo 8, we have
uᵀu ≡ 0 (mod 8) or uᵀu ≡ 4 (mod 8). We consider both of these cases in turn.

Subcase 3.2.1.1. uᵀu ≡ 0 (mod 8). Then, by Lemma A.6, the first four entries of the integral part
of the pivot column of r are even. Hence level(r) = level(s) and, from r, the algorithm prescribes

K[a,b,c,d](−1)τa[a](−1)τb[b](−1)τc[c](−1)τd[d].

We complete the resulting diagram as follows.

s r

t q

K[a,b,c,d](−1)
τa
[a]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[d]

K[1,2,3,4]

K[a,b,c,d](−1)
τa
[a]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[d]

K[1,2,3,4]

The diagram commutes by Relations (2e) and (2f) and the level property is satisfied since level(t) <
level(s) and level(q) < level(r) = level(s).

Subcase 3.2.1.2. uᵀu ≡ 4 (mod 8). Then, by Lemma A.7, the first four entries of the pivot
column of r are odd. Moreover, by Lemma A.7 evenly many of these entries are congruent to 1
modulo 4. Hence level(r) = (j, k,m+ 1) and, from r, the algorithm prescribes

K[1,2,3,4](−1)
τ ′1
[1](−1)

τ ′2
[2](−1)

τ ′3
[3](−1)

τ ′4
[4] and K[a,b,c,d](−1)τa[a](−1)τb[b](−1)τc[c](−1)τd[d]

for some τ ′1, τ
′
2, τ
′
3, τ
′
4 ∈ Z2 such that evenly many of τ ′1, τ

′
2, τ
′
3, τ
′
4 are even. As result, by Corol-

lary A.13, there is a word W over {X, (−1)} such that extent(W ) ≤ 4 and

K[1,2,3,4](−1)
τ ′1
[1](−1)

τ ′2
[2](−1)

τ ′3
[3](−1)

τ ′4
[4]K[1,2,3,4] ≈W.
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We complete the diagram as follows.

s r

t q1

q2

K[a,b,c,d](−1)
τa
[a]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[d]

K[1,2,3,4]

K[1,2,3,4](−1)
τ ′1
[1]

(−1)τ
′
2

[2]
(−1)τ

′
3

[3]
(−1)τ

′
4

[4]

W
K[a,b,c,d](−1)

τa
[a]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[d]

The diagram commutes by Relations (2c) and (2e), since

K[1,2,3,4](−1)
τ ′1
[1](−1)

τ ′2
[2](−1)

τ ′3
[3](−1)

τ ′4
[4]K[1,2,3,4] ≈W.

Moreover, the level property is satisfied since level(t), level(q2) < level(q1) = level(s) and the level
of t is invariant under the action of W , because W is a word over {X, (−1)} and extent(W ) < a.

Subcase 3.2.2. |{a, b, c, d}∩{1, 2, 3, 4}| = 1. Then 1 ≤ a ≤ 4 and 5 ≤ b < c < d. We now consider
the cases a = 1, a = 2, a = 3, and a = 4 in turn.

Subcase 3.2.2.1. a = 1. Then, from s, the algorithm prescribes

K[1,b,c,d](−1)τ1[1](−1)τb[b](−1)τc[c](−1)τd[d].

Moreover, by Lemma A.4, level(r) = (j, k + 1, 1) and, writing r for the first four entries of the
integral part of r, we have r ≡ 1111 (mod 4) or r ≡ 3333 (mod 4). Hence, from r the algorithm
prescribes

K[1,2,3,4](−1)τ[1](−1)τ[2](−1)τ[3](−1)τ[4]

where the value of τ depends on whether r ≡ 1111 (mod 4) or r ≡ 3333 (mod 4). Now, since

K[1,2,3,4](−1)τ[1](−1)τ[2](−1)τ[3](−1)τ[4]K[1,2,3,4] ≈ (−1)τ[1](−1)τ[2](−1)τ[3](−1)τ[4],

by Relation (9g), we know that from q1 = (K[1,2,3,4](−1)τ[1](−1)τ[2](−1)τ[3](−1)τ[4])r the algorithm
prescribes

K[1,b,c,d](−1)τ1+τ[1] (−1)τb[b](−1)τc[c](−1)τd[d].

We therefore complete the resulting diagram as follows.

s r

t q1

q2

K[1,b,c,d](−1)
τ1
[1]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[d]

K[1,2,3,4]

K[1,2,3,4](−1)τ[1](−1)
τ
[2]

(−1)τ
[3]

(−1)τ
[4]

(−1)τ
[2]

(−1)τ
[3]

(−1)τ
[4]

K[1,b,c,d](−1)
τ1+τ

[1]
(−1)τb

[b]
(−1)τc

[c]
(−1)τd

[d]

The diagram commutes by Relations (1b), (1c), (2d), (2e) and (9g)

K[1,b,c,d](−1)τ1+τ[1] (−1)τb[b](−1)τc[c](−1)τd[d]K[1,2,3,4](−1)τ[1](−1)τ[2](−1)τ[3](−1)τ[4]K[1,2,3,4]

≈ K[1,b,c,d](−1)τ1+τ[1] (−1)τb[b](−1)τc[c](−1)τd[d](−1)τ[1](−1)τ[2](−1)τ[3](−1)τ[4]

≈ (−1)τ[2](−1)τ[3](−1)τ[4]K[1,b,c,d](−1)τ1[1](−1)τb[b](−1)τc[c](−1)τd[d].
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Moreover, the level property is satisfied since level(t) < level(s), level(q2) < level(q1) = level(s) and
(−1)τ[2](−1)τ[3](−1)τ[4] cannot increase the number of odd entries.

Subcase 3.2.2.2. a = 2. Then, from s, the algorithm prescribes

K[2,b,c,d](−1)τ2[2](−1)τb[b](−1)τc[c](−1)τd[d].

Moreover, by Lemma A.4, level(r) = (j, k + 1, 1) and, writing r for the first four entries of the
integral part of r, we have r ≡ 1313 (mod 4) or r ≡ 3131 (mod 4). Hence, from r the algorithm
prescribes

K[1,2,3,4](−1)τ[1](−1)τ+1
[2] (−1)τ[3](−1)τ+1

[4]

where the value of τ depends on whether r ≡ 1313 (mod 4) or r ≡ 3131 (mod 4). Now, since

K[1,2,3,4](−1)τ[1](−1)τ+1
[2] (−1)τ[3](−1)τ+1

[4] K[1,2,3,4] ≈ X[1,2]X[3,4](−1)τ[1](−1)τ[2](−1)τ[3](−1)τ[4],

by Relations (9b) and (9e), we know that from q1 = (K[1,2,3,4](−1)τ[1](−1)τ+1
[2] (−1)τ[3](−1)τ+1

[4] )r the
algorithm prescribes

K[1,b,c,d](−1)τ2+τ[1] (−1)τb[b](−1)τc[c](−1)τd[d].

We therefore complete the resulting diagram as follows.

s r

t q1

q2

K[2,b,c,d](−1)
τ2
[2]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[d]

K[1,2,3,4]

K[1,2,3,4](−1)τ[1](−1)
τ+1
[2]

(−1)τ
[3]

(−1)τ+1
[4]

X[1,2]X[3,4](−1)τ[1](−1)
τ
[3]

(−1)τ
[4]

K[1,b,c,d](−1)
τ2+τ

[1]
(−1)τb

[b]
(−1)τc

[c]
(−1)τd

[d]

The diagram commutes by Relations (1b), (1c), (2b), (2c), (2d), (2e), (3c), (3d), (9b) and (9e)

K[1,b,c,d](−1)τ2+τ[1] (−1)τb[b](−1)τc[c](−1)τd[d]K[1,2,3,4](−1)τ[1](−1)τ+1
[2] (−1)τ[3](−1)τ+1

[4] K[1,2,3,4]

≈ K[1,b,c,d](−1)τ2+τ[1] (−1)τb[b](−1)τc[c](−1)τd[d]X[1,2]X[3,4](−1)τ[1](−1)τ[2](−1)τ[3](−1)τ[4]

≈ X[1,2]X[3,4](−1)τ[1](−1)τ[3](−1)τ[4]K[2,b,c,d](−1)τ2[2](−1)τb[b](−1)τc[c](−1)τd[d].

Moreover, the level property is satisfied since level(t) < level(s), level(q2) < level(q1) = level(s) and
X[1,2]X[3,4](−1)τ[1](−1)τ[2](−1)τ[3](−1)τ[4] cannot increase the number of odd entries .

Subcase 3.2.2.3. a = 3. Then, from s, the algorithm prescribes

K[3,b,c,d](−1)τ3[3](−1)τb[b](−1)τc[c](−1)τd[d].

Moreover, by Lemma A.4, level(r) = (j, k + 1, 1) and, writing r for the first four entries of the
integral part of r, we have r ≡ 1133 (mod 4) or r ≡ 3311 (mod 4). Hence, from r the algorithm
prescribes

K[1,2,3,4](−1)τ[1](−1)τ[2](−1)τ+1
[3] (−1)τ+1

[4]

where the value of τ depends on whether r ≡ 1133 (mod 4) or r ≡ 3311 (mod 4). Now, since

K[1,2,3,4](−1)τ[1](−1)τ[2](−1)τ+1
[3] (−1)τ+1

[4] K[1,2,3,4] ≈ X[1,3]X[2,4](−1)τ[1](−1)τ[2](−1)τ[3](−1)τ[4],
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by Relations (9a) and (9f), we know that from q1 = (K[1,2,3,4](−1)τ[1](−1)τ[2](−1)τ+1
[3] (−1)τ+1

[4] )r the
algorithm prescribes

K[1,b,c,d](−1)τ3+τ[1] (−1)τb[b](−1)τc[c](−1)τd[d].

We therefore complete the resulting diagram as follows.

s r

t q1

q2

K[3,b,c,d](−1)
τ3
[3]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[d]

K[1,2,3,4]

K[1,2,3,4](−1)τ[1](−1)
τ
[2]

(−1)τ+1
[3]

(−1)τ+1
[4]

X[1,3]X[2,4](−1)τ[1](−1)
τ
[2]

(−1)τ
[4]

K[1,b,c,d](−1)
τ3+τ

[1]
(−1)τb

[b]
(−1)τc

[c]
(−1)τd

[d]

The diagram commutes by Relations (1b), (1c), (2b), (2c), (2d), (2e), (3c), (3d), (9a) and (9f)

K[1,b,c,d](−1)τ3+τ[1] (−1)τb[b](−1)τc[c](−1)τd[d]K[1,2,3,4](−1)τ[1](−1)τ[2](−1)τ+1
[3] (−1)τ+1

[4] K[1,2,3,4]

≈ K[1,b,c,d](−1)τ3+τ[1] (−1)τb[b](−1)τc[c](−1)τd[d]X[1,3]X[2,4](−1)τ[1](−1)τ[2](−1)τ[3](−1)τ[4]

≈ X[1,3]X[2,4](−1)τ[1](−1)τ[2](−1)τ[4]K[3,b,c,d](−1)τ3[3](−1)τb[b](−1)τc[c](−1)τd[d].

Moreover, the level property is satisfied since level(t) < level(s), level(q2) < level(q1) = level(s) and
X[1,3]X[2,4](−1)τ[1](−1)τ[2](−1)τ[4] cannot increase the number of odd entries.

Subcase 3.2.2.4. a = 4. Then, from s, the algorithm prescribes

K[4,b,c,d](−1)τ4[4](−1)τb[b](−1)τc[c](−1)τd[d].

Moreover, by Lemma A.4, level(r) = (j, k + 1, 1) and, writing r for the first four entries of the
integral part of r, we have r ≡ 1331 (mod 4) or r ≡ 3113 (mod 4). Hence, from r the algorithm
prescribes

K[1,2,3,4](−1)τ[1](−1)τ+1
[2] (−1)τ+1

[3] (−1)τ[4]

where the value of τ depends on whether r ≡ 1331 (mod 4) or r ≡ 3113 (mod 4). Now, since

K[1,2,3,4](−1)τ[1](−1)τ+1
[2] (−1)τ+1

[3] (−1)τ[4]K[1,2,3,4] ≈ X[1,4]X[2,3](−1)τ[1](−1)τ[2](−1)τ[3](−1)τ[4],

by Relations (9c) and (9d), we know that from q1 = (K[1,2,3,4](−1)τ[1](−1)τ+1
[2] (−1)τ+1

[3] (−1)τ[4])r the
algorithm prescribes

K[1,b,c,d](−1)τ4+τ[1] (−1)τb[b](−1)τc[c](−1)τd[d].

We therefore complete the resulting diagram as follows.

s r

t q1

q2

K[4,b,c,d](−1)
τ4
[4]

(−1)τb
[b]

(−1)τc
[c]

(−1)τd
[d]

K[1,2,3,4]

K[1,2,3,4](−1)τ[1](−1)
τ+1
[2]

(−1)τ+1
[3]

(−1)τ
[4]

X[1,4]X[2,3](−1)τ[1](−1)
τ
[2]

(−1)τ
[3]

K[1,b,c,d](−1)
τ4+τ

[1]
(−1)τb

[b]
(−1)τc

[c]
(−1)τd

[d]
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The diagram commutes by Relations (1b), (1c), (2b), (2c), (2d), (2e), (3c), (3d), (9c) and (9d)

K[1,b,c,d](−1)τ4+τ[1] (−1)τb[b](−1)τc[c](−1)τd[d]K[1,2,3,4](−1)τ[1](−1)τ+1
[2] (−1)τ+1

[3] (−1)τ[4]K[1,2,3,4]

≈ K[1,b,c,d](−1)τ4+τ[1] (−1)τb[b](−1)τc[c](−1)τd[d]X[1,4]X[2,3](−1)τ[1](−1)τ[2](−1)τ[3](−1)τ[4]

≈ X[1,4]X[2,3](−1)τ[1](−1)τ[2](−1)τ[3]K[4,b,c,d](−1)τ4[4](−1)τb[b](−1)τc[c](−1)τd[d].

Moreover, the level property is satisfied since level(t) < level(s), level(q2) < level(q1) = level(s) and
X[1,2]X[3,4](−1)τ[1](−1)τ[2](−1)τ[3](−1)τ[4] cannot increase the number of odd entries .

Subcase 3.2.3. |{a, b, c, d} ∩ {1, 2, 3, 4}| = 2. Then a, b ∈ {1, 2, 3, 4} and 5 ≤ c < d. We now
consider the cases {a, b} = {1, 2}, {a, b} = {1, 3}, {a, b} = {1, 4}, {a, b} = {2, 3}, {a, b} = {2, 4},
and {a, b} = {3, 4} in turn.

Subcase 3.2.3.1. {a, b} = {1, 2}. Then, from s, the algorithm prescribes

K[1,2,c,d](−1)τ1[1](−1)τ2[2](−1)τc[c](−1)τd[d].

Moreover, by Lemma A.3, level(r) = level(s) and, writing r for the first four entries of the integral
part of r, we have r ≡ 1010 (mod 2) or r ≡ 0101 (mod 2). We consider both cases in turn.

Subcase 3.2.3.1.1. r ≡ 0101 (mod 2). In this case, from r, the algorithm prescribes

K[1,3,c,d](−1)
τ ′1
[1](−1)

τ ′3
[3](−1)τc[c](−1)τd[d].

By Proposition A.15, there exists words V and W over {(−1)[x], X[x,y]}, with x, y ∈ {1, 2, 3, 4, c, d},
such that

K[1,3,c,d](−1)
τ ′1
[1](−1)

τ ′3
[3](−1)τc[c](−1)τd[d]K[1,2,3,4](−1)τd[d](−1)τc[c](−1)τ2[2](−1)τ1[1]K[1,2,c,d] ≈ V K[1,2,3,4]W .

Hence, we can complete the diagram as follows.

s r

t q

K[1,2,c,d](−1)
τ1
[1]

(−1)τ2
[2]

(−1)τc
[c]

(−1)τd
[d]

K[1,2,3,4]

K[1,3,c,d](−1)
τ ′1
[1]

(−1)τ
′
3

[3]
(−1)τc

[c]
(−1)τd

[d]

V K[1,2,3,4]W

The diagram commutes by construction. To see that the level property is satisfied, first note that
level(t), level(q) ≤ (j, k,m − 1) < level(s). Now, since V and W are words over {(−1)[x], X[x,y]},
they can neither increase nor decrease the number of odd entries. As a result, because V K[1,2,3,4]W
contains a single occurrence of K, it cannot raise the level of the state to level(s) and also lower it
back to level(q). Thus,

level(V K[1,2,3,4]W ) < level(s)

as desired.
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Subcase 3.2.3.1.2. r ≡ 0101 (mod 2). In this case, from r, the algorithm prescribes

K[2,4,c,d](−1)
τ ′2
[2](−1)

τ ′4
[4](−1)τc[c](−1)τd[d].

By Proposition A.15, there exists words V and W over {(−1)[x], X[x,y]}, with x, y ∈ {1, 2, 3, 4, c, d},
such that

K[2,4,c,d](−1)
τ ′2
[2](−1)

τ ′4
[4](−1)τc[c](−1)τd[d]K[1,2,3,4](−1)τd[d](−1)τc[c](−1)τ2[2](−1)τ1[1]K[1,2,c,d] ≈ V K[1,2,3,4]W .

Hence, we can complete the diagram as follows.

s r

t q

K[1,2,c,d](−1)
τ1
[1]

(−1)τ2
[2]

(−1)τc
[c]

(−1)τd
[d]

K[1,2,3,4]

K[2,4,c,d](−1)
τ ′2
[2]

(−1)τ
′
4

[4]
(−1)τc

[c]
(−1)τd

[d]

V K[1,2,3,4]W

The diagram commutes by construction. To see that the level property is satisfied, first note that
level(t), level(q) ≤ (j, k,m − 1) < level(s). Now, since V and W are words over {(−1)[x], X[x,y]},
they can neither increase nor decrease the number of odd entries. As a result, because V K[1,2,3,4]W
contains a single occurrence of K, it cannot raise the level of the state to level(s) and also lower it
back to level(q). Thus,

level(V K[1,2,3,4]W ) < level(s)

as desired.

Subcase 3.2.3.2. {a, b} = {1, 3}. Then, from s, the algorithm prescribes

K[1,3,c,d](−1)τ1[1](−1)τ3[3](−1)τc[c](−1)τd[d].

Moreover, by Lemma A.3, level(r) = level(s) and, writing r for the first four entries of the integral
part of r, we have r ≡ 1100 (mod 2) or r ≡ 0011 (mod 2). We consider both cases in turn.

Subcase 3.2.3.2.1. r ≡ 1100 (mod 2). In this case, from r, the algorithm prescribes

K[1,2,c,d](−1)
τ ′1
[1](−1)

τ ′2
[2](−1)τc[c](−1)τd[d].

By Proposition A.15, there exists words V and W over {(−1)[x], X[x,y]}, with x, y ∈ {1, 2, 3, 4, c, d},
such that

K[1,2,c,d](−1)
τ ′1
[1](−1)

τ ′2
[2](−1)τc[c](−1)τd[d]K[1,2,3,4](−1)τd[d](−1)τc[c](−1)τ3[3](−1)τ1[1]K[1,3,c,d] ≈ V K[1,2,3,4]W .

Hence, we can complete the diagram as follows.

s r

t q

K[1,3,c,d](−1)
τ1
[1]

(−1)τ3
[3]

(−1)τc
[c]

(−1)τd
[d]

K[1,2,3,4]

K[1,2,c,d](−1)
τ ′1
[1]

(−1)τ
′
2

[2]
(−1)τc

[c]
(−1)τd

[d]

V K[1,2,3,4]W
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The diagram commutes by construction. To see that the level property is satisfied, first note that
level(t), level(q) ≤ (j, k,m − 1) < level(s). Now, since V and W are words over {(−1)[x], X[x,y]},
they can neither increase nor decrease the number of odd entries. As a result, because V K[1,2,3,4]W
contains a single occurrence of K, it cannot raise the level of the state to level(s) and also lower it
back to level(q). Thus,

level(V K[1,2,3,4]W ) < level(s)

as desired.

Subcase 3.2.3.2.2. r ≡ 0011 (mod 2). In this case, from r, the algorithm prescribes

K[3,4,c,d](−1)
τ ′3
[3](−1)

τ ′4
[4](−1)τc[c](−1)τd[d].

By Proposition A.15, there exists words V and W over {(−1)[x], X[x,y]}, with x, y ∈ {1, 2, 3, 4, c, d},
such that

K[3,4,c,d](−1)
τ ′3
[3](−1)

τ ′4
[4](−1)τc[c](−1)τd[d]K[1,2,3,4](−1)τd[d](−1)τc[c](−1)τ3[3](−1)τ1[1]K[1,3,c,d] ≈ V K[1,2,3,4]W .

Hence, we can complete the diagram as follows.

s r

t q

K[1,3,c,d](−1)
τ1
[1]

(−1)τ3
[3]

(−1)τc
[c]

(−1)τd
[d]

K[1,2,3,4]

K[3,4,c,d](−1)
τ ′3
[3]

(−1)τ
′
4

[4]
(−1)τc

[c]
(−1)τd

[d]

V K[1,2,3,4]W

The diagram commutes by construction. To see that the level property is satisfied, first note that
level(t), level(q) ≤ (j, k,m − 1) < level(s). Now, since V and W are words over {(−1)[x], X[x,y]},
they can neither increase nor decrease the number of odd entries. As a result, because V K[1,2,3,4]W
contains a single occurrence of K, it cannot raise the level of the state to level(s) and also lower it
back to level(q). Thus,

level(V K[1,2,3,4]W ) < level(s)

as desired.

Subcase 3.2.3.3. {a, b} = {1, 4}. Then, from s, the algorithm prescribes

K[1,4,c,d](−1)τ1[1](−1)τ4[4](−1)τc[c](−1)τd[d].

Moreover, by Lemma A.3, level(r) = level(s) and, writing r for the first four entries of the integral
part of r, we have r ≡ 1001 (mod 2) or r ≡ 0110 (mod 2). We consider both cases in turn.

Subcase 3.2.3.3.1. r ≡ 1001 (mod 2). In this case, from r, the algorithm prescribes

K[1,4,c,d](−1)
τ ′1
[1](−1)

τ ′4
[4](−1)τc[c](−1)τd[d].

By Proposition A.15, there exists words V and W over {(−1)[x], X[x,y]}, with x, y ∈ {1, 2, 3, 4, c, d},
such that

K[1,4,c,d](−1)
τ ′1
[1](−1)

τ ′4
[4](−1)τc[c](−1)τd[d]K[1,2,3,4](−1)τd[d](−1)τc[c](−1)τ4[4](−1)τ1[1]K[1,4,c,d] ≈ V K[1,2,3,4]W .
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Hence, we can complete the diagram as follows.

s r

t q

K[1,4,c,d](−1)
τ1
[1]

(−1)τ4
[4]

(−1)τc
[c]

(−1)τd
[d]

K[1,2,3,4]

K[1,4,c,d](−1)
τ ′1
[1]

(−1)τ
′
4

[4]
(−1)τc

[c]
(−1)τd

[d]

V K[1,2,3,4]W

The diagram commutes by construction. To see that the level property is satisfied, first note that
level(t), level(q) ≤ (j, k,m − 1) < level(s). Now, since V and W are words over {(−1)[x], X[x,y]},
they can neither increase nor decrease the number of odd entries. As a result, because V K[1,2,3,4]W
contains a single occurrence of K, it cannot raise the level of the state to level(s) and also lower it
back to level(q). Thus,

level(V K[1,2,3,4]W ) < level(s)

as desired.

Subcase 3.2.3.3.2. r ≡ 0110 (mod 2). In this case, from r, the algorithm prescribes

K[2,3,c,d](−1)
τ ′2
[2](−1)

τ ′3
[3](−1)τc[c](−1)τd[d].

By Proposition A.15, there exists words V and W over {(−1)[x], X[x,y]}, with x, y ∈ {1, 2, 3, 4, c, d},
such that

K[2,3,c,d](−1)
τ ′2
[2](−1)

τ ′3
[3](−1)τc[c](−1)τd[d]K[1,2,3,4](−1)τd[d](−1)τc[c](−1)τ4[4](−1)τ1[1]K[1,4,c,d] ≈ V K[1,2,3,4]W .

Hence, we can complete the diagram as follows.

s r

t q

K[1,4,c,d](−1)
τ1
[1]

(−1)τ4
[4]

(−1)τc
[c]

(−1)τd
[d]

K[1,2,3,4]

K[2,3,c,d](−1)
τ ′2
[2]

(−1)τ
′
3

[3]
(−1)τc

[c]
(−1)τd

[d]

V K[1,2,3,4]W

The diagram commutes by construction. To see that the level property is satisfied, first note that
level(t), level(q) ≤ (j, k,m − 1) < level(s). Now, since V and W are words over {(−1)[x], X[x,y]},
they can neither increase nor decrease the number of odd entries. As a result, because V K[1,2,3,4]W
contains a single occurrence of K, it cannot raise the level of the state to level(s) and also lower it
back to level(q). Thus,

level(V K[1,2,3,4]W ) < level(s)

as desired.

Subcase 3.2.3.4. {a, b} = {2, 3}. Then, from s, the algorithm prescribes

K[2,3,c,d](−1)τ2[2](−1)τ3[3](−1)τc[c](−1)τd[d].

Moreover, by Lemma A.3, level(r) = level(s) and, writing r for the first four entries of the integral
part of r, we have r ≡ 1001 (mod 2) or r ≡ 0110 (mod 2). We consider both cases in turn.
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Subcase 3.2.3.4.1. r ≡ 1001 (mod 2). In this case, from r, the algorithm prescribes

K[1,4,c,d](−1)
τ ′1
[1](−1)

τ ′4
[4](−1)τc[c](−1)τd[d].

By Proposition A.15, there exists words V and W over {(−1)[x], X[x,y]}, with x, y ∈ {1, 2, 3, 4, c, d},
such that

K[1,4,c,d](−1)
τ ′1
[1](−1)

τ ′4
[4](−1)τc[c](−1)τd[d]K[1,2,3,4](−1)τd[d](−1)τc[c](−1)τ3[3](−1)τ2[2]K[2,3,c,d] ≈ V K[1,2,3,4]W .

Hence, we can complete the diagram as follows.

s r

t q

K[2,3,c,d](−1)
τ2
[2]

(−1)τ3
[3]

(−1)τc
[c]

(−1)τd
[d]

K[1,2,3,4]

K[1,4,c,d](−1)
τ ′1
[1]

(−1)τ
′
4

[4]
(−1)τc

[c]
(−1)τd

[d]

V K[1,2,3,4]W

The diagram commutes by construction. To see that the level property is satisfied, first note that
level(t), level(q) ≤ (j, k,m − 1) < level(s). Now, since V and W are words over {(−1)[x], X[x,y]},
they can neither increase nor decrease the number of odd entries. As a result, because V K[1,2,3,4]W
contains a single occurrence of K, it cannot raise the level of the state to level(s) and also lower it
back to level(q). Thus,

level(V K[1,2,3,4]W ) < level(s)

as desired.

Subcase 3.2.3.4.2. r ≡ 0110 (mod 2). In this case, from r, the algorithm prescribes

K[2,3,c,d](−1)
τ ′2
[2](−1)

τ ′3
[3](−1)τc[c](−1)τd[d].

By Proposition A.15, there exists words V and W over {(−1)[x], X[x,y]}, with x, y ∈ {1, 2, 3, 4, c, d},
such that

K[2,3,c,d](−1)
τ ′2
[2](−1)

τ ′3
[3](−1)τc[c](−1)τd[d]K[1,2,3,4](−1)τd[d](−1)τc[c](−1)τ3[3](−1)τ2[2]K[2,3,c,d] ≈ V K[1,2,3,4]W .

Hence, we can complete the diagram as follows.

s r

t q

K[2,3,c,d](−1)
τ2
[2]

(−1)τ3
[3]

(−1)τc
[c]

(−1)τd
[d]

K[1,2,3,4]

K[2,3,c,d](−1)
τ ′2
[2]

(−1)τ
′
3

[3]
(−1)τc

[c]
(−1)τd

[d]

V K[1,2,3,4]W

The diagram commutes by construction. To see that the level property is satisfied, first note that
level(t), level(q) ≤ (j, k,m − 1) < level(s). Now, since V and W are words over {(−1)[x], X[x,y]},
they can neither increase nor decrease the number of odd entries. As a result, because V K[1,2,3,4]W
contains a single occurrence of K, it cannot raise the level of the state to level(s) and also lower it
back to level(q). Thus,

level(V K[1,2,3,4]W ) < level(s)

as desired.
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Subcase 3.2.3.5. {a, b} = {2, 4}. Then, from s, the algorithm prescribes

K[2,4,c,d](−1)τ2[2](−1)τ4[4](−1)τc[c](−1)τd[d].

Moreover, by Lemma A.3, level(r) = level(s) and, writing r for the first four entries of the integral
part of r, we have r ≡ 1100 (mod 2) or r ≡ 0011 (mod 2). We consider both cases in turn.

Subcase 3.2.3.5.1. r ≡ 1100 (mod 2). In this case, from r, the algorithm prescribes

K[1,2,c,d](−1)
τ ′1
[1](−1)

τ ′2
[2](−1)τc[c](−1)τd[d].

By Proposition A.15, there exists words V and W over {(−1)[x], X[x,y]}, with x, y ∈ {1, 2, 3, 4, c, d},
such that

K[1,2,c,d](−1)
τ ′1
[1](−1)

τ ′2
[2](−1)τc[c](−1)τd[d]K[1,2,3,4](−1)τd[d](−1)τc[c](−1)τ4[4](−1)τ2[2]K[2,4,c,d] ≈ V K[1,2,3,4]W .

Hence, we can complete the diagram as follows.

s r

t q

K[2,4,c,d](−1)
τ2
[2]

(−1)τ4
[4]

(−1)τc
[c]

(−1)τd
[d]

K[1,2,3,4]

K[1,2,c,d](−1)
τ ′1
[1]

(−1)τ
′
2

[2]
(−1)τc

[c]
(−1)τd

[d]

V K[1,2,3,4]W

The diagram commutes by construction. To see that the level property is satisfied, first note that
level(t), level(q) ≤ (j, k,m − 1) < level(s). Now, since V and W are words over {(−1)[x], X[x,y]},
they can neither increase nor decrease the number of odd entries. As a result, because V K[1,2,3,4]W
contains a single occurrence of K, it cannot raise the level of the state to level(s) and also lower it
back to level(q). Thus,

level(V K[1,2,3,4]W ) < level(s)

as desired.

Subcase 3.2.3.5.2. r ≡ 0011 (mod 2). In this case, from r, the algorithm prescribes

K[3,4,c,d](−1)
τ ′3
[3](−1)

τ ′4
[4](−1)τc[c](−1)τd[d].

By Proposition A.15, there exists words V and W over {(−1)[x], X[x,y]}, with x, y ∈ {1, 2, 3, 4, c, d},
such that

K[3,4,c,d](−1)
τ ′3
[3](−1)

τ ′4
[4](−1)τc[c](−1)τd[d]K[1,2,3,4](−1)τd[d](−1)τc[c](−1)τ4[4](−1)τ2[2]K[2,4,c,d] ≈ V K[1,2,3,4]W .

Hence, we can complete the diagram as follows.

s r

t q

K[2,4,c,d](−1)
τ2
[2]

(−1)τ4
[4]

(−1)τc
[c]

(−1)τd
[d]

K[1,2,3,4]

K[3,4,c,d](−1)
τ ′3
[3]

(−1)τ
′
4

[4]
(−1)τc

[c]
(−1)τd

[d]

V K[1,2,3,4]W

48



The diagram commutes by construction. To see that the level property is satisfied, first note that
level(t), level(q) ≤ (j, k,m − 1) < level(s). Now, since V and W are words over {(−1)[x], X[x,y]},
they can neither increase nor decrease the number of odd entries. As a result, because V K[1,2,3,4]W
contains a single occurrence of K, it cannot raise the level of the state to level(s) and also lower it
back to level(q). Thus,

level(V K[1,2,3,4]W ) < level(s)

as desired.

Subcase 3.2.3.6. {a, b} = {3, 4}. Then, from s, the algorithm prescribes

K[3,4,c,d](−1)τ3[3](−1)τ4[4](−1)τc[c](−1)τd[d].

Moreover, by Lemma A.3, level(r) = level(s) and, writing r for the first four entries of the integral
part of r, we have r ≡ 1010 (mod 2) or r ≡ 0101 (mod 2). We consider both cases in turn.

Subcase 3.2.3.6.1. r ≡ 0101 (mod 2). In this case, from r, the algorithm prescribes

K[1,3,c,d](−1)
τ ′1
[1](−1)

τ ′3
[3](−1)τc[c](−1)τd[d].

By Proposition A.15, there exists words V and W over {(−1)[x], X[x,y]}, with x, y ∈ {1, 2, 3, 4, c, d},
such that

K[1,3,c,d](−1)
τ ′1
[1](−1)

τ ′3
[3](−1)τc[c](−1)τd[d]K[1,2,3,4](−1)τd[d](−1)τc[c](−1)τ4[4](−1)τ3[3]K[3,4,c,d] ≈ V K[1,2,3,4]W .

Hence, we can complete the diagram as follows.

s r

t q

K[3,4,c,d](−1)
τ3
[3]

(−1)τ4
[4]

(−1)τc
[c]

(−1)τd
[d]

K[1,2,3,4]

K[1,3,c,d](−1)
τ ′1
[1]

(−1)τ
′
3

[3]
(−1)τc

[c]
(−1)τd

[d]

V K[1,2,3,4]W

The diagram commutes by construction. To see that the level property is satisfied, first note that
level(t), level(q) ≤ (j, k,m − 1) < level(s). Now, since V and W are words over {(−1)[x], X[x,y]},
they can neither increase nor decrease the number of odd entries. As a result, because V K[1,2,3,4]W
contains a single occurrence of K, it cannot raise the level of the state to level(s) and also lower it
back to level(q). Thus,

level(V K[1,2,3,4]W ) < level(s)

as desired.

Subcase 3.2.3.6.2. r ≡ 0101 (mod 2). In this case, from r, the algorithm prescribes

K[2,4,c,d](−1)
τ ′2
[2](−1)

τ ′4
[4](−1)τc[c](−1)τd[d].

By Proposition A.15, there exists words V and W over {(−1)[x], X[x,y]}, with x, y ∈ {1, 2, 3, 4, c, d},
such that

K[2,4,c,d](−1)
τ ′2
[2](−1)

τ ′4
[4](−1)τc[c](−1)τd[d]K[1,2,3,4](−1)τd[d](−1)τc[c](−1)τ4[4](−1)τ3[3]K[3,4,c,d] ≈ V K[1,2,3,4]W .
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Hence, we can complete the diagram as follows.

s r

t q

K[3,4,c,d](−1)
τ3
[3]

(−1)τ4
[4]

(−1)τc
[c]

(−1)τd
[d]

K[1,2,3,4]

K[2,4,c,d](−1)
τ ′2
[2]

(−1)τ
′
4

[4]
(−1)τc

[c]
(−1)τd

[d]

V K[1,2,3,4]W

The diagram commutes by construction. To see that the level property is satisfied, first note that
level(t), level(q) ≤ (j, k,m − 1) < level(s). Now, since V and W are words over {(−1)[x], X[x,y]},
they can neither increase nor decrease the number of odd entries. As a result, because V K[1,2,3,4]W
contains a single occurrence of K, it cannot raise the level of the state to level(s) and also lower it
back to level(q). Thus,

level(V K[1,2,3,4]W ) < level(s)

as desired.

Subcase 3.2.4. |{a, b, c, d}∩{1, 2, 3, 4}| = 3. Then a, b, c ∈ {1, 2, 3, 4} and 5 ≤ d. We now consider
the cases {a, b, c} = {1, 2, 3}, {a, b, c} = {1, 2, 4}, {a, b, c} = {1, 3, 4}, and {a, b, c} = {2, 3, 4} in
turn.

Subcase 3.2.4.1. {a, b, c} = {1, 2, 3}. Then, from s, the algorithm prescribes

K[1,2,3,d](−1)τ1[1](−1)τ2[2](−1)τ3[3](−1)τd[d].

Moreover, by Lemma A.4, level(r) = (j, k + 1, 1) and, writing r for the first four entries of the
integral part of r, we have r ≡ 1331 (mod 4) or r ≡ 3113 (mod 4). Hence, from r the algorithm
prescribes

K[1,2,3,4](−1)τ[1](−1)τ+1
[2] (−1)τ+1

[3] (−1)τ[4]

where the value of τ depends on whether r ≡ 1331 (mod 4) or r ≡ 3113 (mod 4). Now, since

K[1,2,3,4](−1)τ[1](−1)τ+1
[2] (−1)τ+1

[3] (−1)τ[4]K[1,2,3,4] ≈ X[1,4]X[2,3](−1)τ[1](−1)τ[2](−1)τ[3](−1)τ[4],

by Relations (9c) and (9d), we know that from q1 = (K[1,2,3,4](−1)τ[1](−1)τ+1
[2] (−1)τ+1

[3] (−1)τ[4])r the
algorithm prescribes

K[2,3,4,d](−1)τ3+τ[2] (−1)τ2+τ[3] (−1)τ1+τ[4] (−1)τd[d].

We therefore complete the resulting diagram as follows.

s r

t q1

q2

K[1,2,3,d](−1)
τ1
[1]

(−1)τ2
[2]

(−1)τ3
[3]

(−1)τd
[d]

K[1,2,3,4]

K[1,2,3,4](−1)τ[1](−1)
τ+1
[2]

(−1)τ+1
[3]

(−1)τ
[4]

(−1)τ
[1]

(−1)[4](−1)[d]X[4,d]X[1,2]X[2,3]X[3,4]
K[2,3,4,d](−1)

τ3+τ

[2]
(−1)τ2+τ

[3]
(−1)τ1+τ

[4]
(−1)τd

[d]
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The diagram commutes by Relations (1a), (1b), (2b), (2c), (2d), (2e), (3a), (3b), (3c), (3d), (3e),
(3f), (3g), (8b), (9c), (9d) and (9f)

K[2,3,4,d](−1)τ3+τ[2] (−1)τ2+τ[3] (−1)τ1+τ[4] (−1)τd[d]K[1,2,3,4](−1)τ[1](−1)τ+1
[2] (−1)τ+1

[3] (−1)τ[4]K[1,2,3,4]

≈ K[2,3,4,d](−1)τ3+τ[2] (−1)τ2+τ[3] (−1)τ1+τ[4] (−1)τd[d]X[1,4]X[2,3](−1)τ[1](−1)τ[2](−1)τ[3](−1)τ[4]

≈ K[2,3,4,d](−1)τ[1](−1)τ3[2](−1)τ2[3](−1)τ1[4](−1)τd[d]X[1,4]X[2,3]

≈ K[2,3,4,d](−1)τ[1]X[1,4]X[2,3](−1)τ1[1](−1)τ2[2](−1)τ3[3](−1)τd[d]

≈ (−1)τ[1]K[2,3,4,d]X[1,4]X[2,4]X[2,4]X[2,3](−1)τ1[1](−1)τ2[2](−1)τ3[3](−1)τd[d]

≈ (−1)τ[1]K[2,3,4,d]X[2,4]X[1,2]X[2,3]X[3,4](−1)τ1[1](−1)τ2[2](−1)τ3[3](−1)τd[d]

≈ (−1)τ[1]K[2,3,4,d]X[2,4]X[3,d]X[3,d]X[1,2]X[2,3]X[3,4](−1)τ1[1](−1)τ2[2](−1)τ3[3](−1)τd[d]

≈ (−1)τ[1](−1)[4](−1)[d]K[2,3,4,d]X[3,d]X[1,2]X[2,3]X[3,4](−1)τ1[1](−1)τ2[2](−1)τ3[3](−1)τd[d]

≈ (−1)τ[1](−1)[4](−1)[d]X[4,d]X[1,2]X[2,3]X[3,4]K[1,2,3,d](−1)τ1[1](−1)τ2[2](−1)τ3[3](−1)τd[d]

Moreover, the level property is satisfied since level(t) < level(s), level(q2) < level(q1) = level(s) and
(−1)τ[1](−1)[4](−1)[d]X[4,d]X[1,2]X[2,3]X[3,4] cannot increase the number of odd entries .

Subcase 3.2.4.2. {a, b, c} = {1, 2, 4}. Then, from s, the algorithm prescribes

K[1,2,4,d](−1)τ1[1](−1)τ2[2](−1)τ4[4](−1)τd[d].

Moreover, by Lemma A.4, level(r) = (j, k + 1, 1) and, writing r for the first four entries of the
integral part of r, we have r ≡ 1133 (mod 4) or r ≡ 3311 (mod 4). Hence, from r the algorithm
prescribes

K[1,2,3,4](−1)τ[1](−1)τ[2](−1)τ+1
[3] (−1)τ+1

[4]

where the value of τ depends on whether r ≡ 1133 (mod 4) or r ≡ 3311 (mod 4). Now, since

K[1,2,3,4](−1)τ[1](−1)τ[2](−1)τ+1
[3] (−1)τ+1

[4] K[1,2,3,4] ≈ X[1,3]X[2,4](−1)τ[1](−1)τ[2](−1)τ[3](−1)τ[4],

by Relations (9a) and (9f), we know that from q1 = (K[1,2,3,4](−1)τ[1](−1)τ[2](−1)τ+1
[3] (−1)τ+1

[4] )r the
algorithm prescribes

K[2,3,4,d](−1)τ4+τ[2] (−1)τ1+τ[3] (−1)τ2+τ[4] (−1)τd[d].

We therefore complete the resulting diagram as follows.

s r

t q1

q2

K[1,2,4,d](−1)
τ1
[1]

(−1)τ2
[2]

(−1)τ4
[4]

(−1)τd
[d]

K[1,2,3,4]

K[1,2,3,4](−1)τ[1](−1)
τ
[2]

(−1)τ+1
[3]

(−1)τ+1
[4]

(−1)τ
[1]

(−1)[3](−1)[d]X[3,d]X[3,4]X[1,3]X[1,2]
K[2,3,4,d](−1)

τ4+τ

[2]
(−1)τ1+τ

[3]
(−1)τ2+τ

[4]
(−1)τd

[d]

51



The diagram commutes by Relations (1a), (1b), (1c), (2b), (2d), (2e), (3a), (3b), (3c), (3d), (3e),
(4a), (8c), (9a) and (9f)

K[2,3,4,d](−1)τ4+τ[2] (−1)τ1+τ[3] (−1)τ2+τ[4] (−1)τd[d]K[1,2,3,4](−1)τ[1](−1)τ[2](−1)τ+1
[3] (−1)τ+1

[4] K[1,2,3,4]

≈ K[2,3,4,d](−1)τ4+τ[2] (−1)τ1+τ[3] (−1)τ2+τ[4] (−1)τd[d]X[1,3]X[2,4](−1)τ[1](−1)τ[2](−1)τ[3](−1)τ[4]

≈ K[2,3,4,d]X[1,3]X[2,4](−1)τ1[1](−1)τ2[2](−1)τ[3](−1)τ4[4](−1)τd[d]

≈ K[2,3,4,d]X[1,2]X[1,2]X[1,3]X[2,4](−1)τ1[1](−1)τ2[2](−1)τ[3](−1)τ4[4](−1)τd[d]

≈ X[1,2]K[1,3,4,d]X[2,3]X[1,2]X[2,4](−1)τ1[1](−1)τ2[2](−1)τ[3](−1)τ4[4](−1)τd[d]

≈ X[1,2]X[2,3]K[1,2,4,d]X[1,2]X[2,4](−1)τ[3](−1)τ1[1](−1)τ2[2](−1)τ4[4](−1)τd[d]

≈ X[1,2]X[2,3](−1)[2](−1)[d]X[2,d]X[2,4](−1)τ[3]K[1,2,4,d](−1)τ1[1](−1)τ2[2](−1)τ4[4](−1)τd[d]

≈ (−1)τ[1](−1)[3](−1)[d]X[1,2]X[2,3]X[2,d]X[2,4]K[1,2,4,d](−1)τ1[1](−1)τ2[2](−1)τ4[4](−1)τd[d]

≈ (−1)τ[1](−1)[3](−1)[d]X[3,d]X[3,4]X[1,3]X[1,2]K[1,2,4,d](−1)τ1[1](−1)τ2[2](−1)τ4[4](−1)τd[d]

Moreover, the level property is satisfied since level(t) < level(s), level(q2) < level(q1) = level(s) and
(−1)τ[1](−1)[3](−1)[d]X[3,d]X[3,4]X[1,3]X[1,2] cannot increase the number of odd entries.

Subcase 3.2.4.3. {a, b, c} = {1, 3, 4}. Then, from s, the algorithm prescribes

K[1,3,4,d](−1)τ1[1](−1)τ3[3](−1)τ4[4](−1)τd[d].

Moreover, by Lemma A.4, level(r) = (j, k + 1, 1) and, writing r for the first four entries of the
integral part of r, we have r ≡ 1313 (mod 4) or r ≡ 3131 (mod 4). Hence, from r the algorithm
prescribes

K[1,2,3,4](−1)τ[1](−1)τ+1
[2] (−1)τ[3](−1)τ+1

[4]

where the value of τ depends on whether r ≡ 1313 (mod 4) or r ≡ 3131 (mod 4). Now, since

K[1,2,3,4](−1)τ[1](−1)τ+1
[2] (−1)τ[3](−1)τ+1

[4] K[1,2,3,4] ≈ X[1,2]X[3,4](−1)τ[1](−1)τ[2](−1)τ[3](−1)τ[4],

by Relations (9b) and (9e), we know that from q1 = (K[1,2,3,4](−1)τ[1](−1)τ+1
[2] (−1)τ[3](−1)τ+1

[4] )r the
algorithm prescribes

K[2,3,4,d](−1)τ1+τ[2] (−1)τ4+τ[3] (−1)τ3+τ[4] (−1)τd[d].

We therefore complete the resulting diagram as follows.

s r

t q1

q2

K[1,3,4,d](−1)
τ1
[1]

(−1)τ3
[3]

(−1)τ4
[4]

(−1)τd
[d]

K[1,2,3,4]

K[1,2,3,4](−1)τ[1](−1)
τ+1
[2]

(−1)τ
[3]

(−1)τ+1
[4]

(−1)τ
[1]
X[1,2]X[3,4]

K[2,3,4,d](−1)
τ1+τ

[2]
(−1)τ4+τ

[3]
(−1)τ3+τ

[4]
(−1)τd

[d]
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The diagram commutes by Relations (1b), (2b), (2d), (2e), (3c), (3d), (8c), (9b) and (9e)

K[2,3,4,d](−1)τ1+τ[2] (−1)τ4+τ[3] (−1)τ3+τ[4] (−1)τd[d]K[1,2,3,4](−1)τ[1](−1)τ+1
[2] (−1)τ[3](−1)τ+1

[4] K[1,2,3,4]

≈ K[2,3,4,d](−1)τ1+τ[2] (−1)τ4+τ[3] (−1)τ3+τ[4] (−1)τd[d]X[1,2]X[3,4](−1)τ[1](−1)τ[2](−1)τ[3](−1)τ[4]

≈ K[2,3,4,d]X[1,2]X[3,4](−1)τ1[1](−1)τ[2](−1)τ3[3](−1)τ4[4](−1)τd[d]

≈ X[1,2]X[3,4]K[1,3,4,d](−1)τ1[1](−1)τ[2](−1)τ3[3](−1)τ4[4](−1)τd[d]

≈ (−1)τ[1]X[1,2]X[3,4]K[1,3,4,d](−1)τ1[1](−1)τ3[3](−1)τ4[4](−1)τd[d].

Moreover, the level property is satisfied since level(t) < level(s), level(q2) < level(q1) = level(s) and
(−1)τ[1]X[1,2]X[3,4] cannot increase the number of odd entries.

Subcase 3.2.4.4. {a, b, c} = {2, 3, 4}. Then, from s, the algorithm prescribes

K[2,3,4,d](−1)τ2[2](−1)τ3[3](−1)τ4[4](−1)τd[d].

Moreover, by Lemma A.4, level(r) = (j, k + 1, 1) and, writing r for the first four entries of the
integral part of r, we have r ≡ 1111 (mod 4) or r ≡ 3333 (mod 4). Hence, from r the algorithm
prescribes

K[1,2,3,4](−1)τ[1](−1)τ[2](−1)τ[3](−1)τ[4]

where the value of τ depends on whether r ≡ 1111 (mod 4) or r ≡ 3333 (mod 4). Now, since

K[1,2,3,4](−1)τ[1](−1)τ[2](−1)τ[3](−1)τ[4]K[1,2,3,4] ≈ (−1)τ[1](−1)τ[2](−1)τ[3](−1)τ[4],

by Relation (9g), we know that from q1 = (K[1,2,3,4](−1)τ[1](−1)τ[2](−1)τ[3](−1)τ[4])r the algorithm
prescribes

K[2,3,4,d](−1)τ2+τ[2] (−1)τ3+τ[3] (−1)τ4+τ[4] (−1)τd[d].

We therefore complete the resulting diagram as follows.

s r

t q1

q2

K[2,3,4,d](−1)
τ2
[2]

(−1)τ3
[3]

(−1)τ4
[4]

(−1)τd
[d]

K[1,2,3,4]

K[1,2,3,4](−1)τ[1](−1)
τ
[2]

(−1)τ
[3]

(−1)τ
[4]

(−1)τ
[1]

K[2,3,4,d](−1)
τ2+τ

[2]
(−1)τ3+τ

[3]
(−1)τ4+τ

[4]
(−1)τd

[d]

The diagram commutes by Relations (1b), (2d) and (9g)

K[2,3,4,d](−1)τ2+τ[2] (−1)τ3+τ[3] (−1)τ4+τ[4] (−1)τd[d]K[1,2,3,4](−1)τ[1](−1)τ[2](−1)τ[3](−1)τ[4]K[1,2,3,4]

≈ K[2,3,4,d](−1)τ2+τ[2] (−1)τ3+τ[3] (−1)τ4+τ[4] (−1)τd[d](−1)τ[1](−1)τ[2](−1)τ[3](−1)τ[4]

≈ K[2,3,4,d](−1)τ[1](−1)τ2[2](−1)τ3[3](−1)τ4[4](−1)τd[d]

≈ K[2,3,4,d](−1)τ2[2](−1)τ3[3](−1)τ4[4](−1)τd[d](−1)τ[1].

Moreover, the level property is satisfied since level(t) < level(s), level(q2) < level(q1) = level(s) and
(−1)τ[1] cannot increase the number of odd entries.
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Subcase 3.2.5. |{a, b, c, d} ∩ {1, 2, 3, 4}| = 4. Then the first odd entries of u are odd and for
1 ≤ i ≤ 4, there is τi ∈ Z2 such that ui ≡ (−1)τi (mod 4). We now consider the cases

τ1 + τ2 + τ3 + τ4 ≡ 0 (mod 2) and τ1 + τ2 + τ3 + τ4 ≡ 1 (mod 2)

in turn.

Subcase 3.2.5.1. τ1 + τ2 + τ3 + τ4 ≡ 0 (mod 2). Then, by Lemma A.2, we have level(r) ≤
(j, k,m− 1) < level(s). From s, the algorithm prescribes

K[1,2,3,4](−1)τ1[1](−1)τ2[2](−1)τ3[3](−1)τ4[4]

where evenly many of the τi are odd. By Corollary A.13, there exists a word V over {(−1)[x], X[x,y]},
with x, y ∈ {1, 2, 3, 4}, such that K[1,2,3,4](−1)τ1[1](−1)τ2[2](−1)τ3[3](−1)τ4[4]K[1,2,3,4] ≈ V . Hence, we can
complete the diagram as follows.

s r

t

K[1,2,3,4](−1)
τ1
[1]

(−1)τ2
[2]

(−1)τ3
[3]

(−1)τ4
[4]

K[1,2,3,4]

V

The diagram commutes by Relations (1b) and (1c), since

K[1,2,3,4](−1)τ1[1](−1)τ2[2](−1)τ3[3](−1)τ4[4]K[1,2,3,4] ≈ V.

Moreover, the level property is satisfied since level(t), level(r) ≤ (j, k,m− 1) < level(s) and a word
over {(−1)[x], X[x,y]} cannot increase the number of odd entries.

Subcase 3.2.5.2. τ1 +τ2 +τ3 +τ4 ≡ 1 (mod 2). Then, by Lemma A.2, we have level(r) = level(s).
From s and r, the algorithm prescribes

K[1,2,3,4](−1)τ1[1](−1)τ2[2](−1)τ3[3](−1)τ4[4] and K[1,2,3,4](−1)
τ ′1
[1](−1)

τ ′2
[2](−1)

τ ′3
[3](−1)

τ ′4
[4],

respectively, where oddly many of the τi are odd and oddly many of the τ ′i are odd. By Corol-
lary A.14, there exists a word V over {(−1)[x], X[x,y]}, with x, y ∈ {1, 2, 3, 4}, such that

K[1,2,3,4](−1)τ1[1](−1)τ2[2](−1)τ3[3](−1)τ4[4]K[1,2,3,4](−1)
τ ′1
[1](−1)

τ ′2
[2](−1)

τ ′3
[3](−1)

τ ′4
[4]K[1,2,3,4] ≈ V.

Hence, we can complete the diagram as follows.

s r

t q

K[1,2,3,4](−1)
τ1
[1]

(−1)τ2
[2]

(−1)τ3
[3]

(−1)τ4
[4]

K[1,2,3,4]

K[1,2,3,4](−1)
τ ′1
[1]

(−1)τ
′
2

[2]
(−1)τ

′
3

[3]
(−1)τ

′
4

[4]

V

The diagram commutes by Relations (1b) and (1c), since

K[1,2,3,4](−1)τ1[1](−1)τ2[2](−1)τ3[3](−1)τ4[4]K[1,2,3,4](−1)
τ ′1
[1](−1)

τ ′2
[2](−1)

τ ′3
[3](−1)

τ ′4
[4]K[1,2,3,4] ≈ V.

Moreover, the level property is satisfied since level(t) < level(s) and level(q) ≤ level(r) = level(s)
and a word over {(−1)[x], X[x,y]} cannot increase the number of odd entries.
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Lemma A.20 provides a restricted version of the Main Lemma. We now show that it implies
the full version.

Lemma A.21. Suppose N∗ : s ⇒ t and M∗ : s ⇒ r are (possibly empty) sequences of normal
edges with a common source. Then there exists a sequence of simple edges G∗ : t→ r such that the
diagram

s

t r

N∗ M∗

G∗

commutes equationally and level(G∗) ≤ max(level(t), level(r)).

Proof. Since there is at most one normal edge from any given state, either N∗ must be a prefix of
M∗ or vice versa. Therefore, there either there exists a sequence of normal edges P ∗ : t ⇒ r or
Q∗ : r ⇒ t. In the former case we take G∗ = P ∗, and in the latter case we take G∗ = Q∗−1.

Lemma (Main Lemma). Let s, t, and r be states, N : s ⇒ t be a normal edge, and G : s → r be
a simple edge. Then there exists a state q, a sequence of normal edges N∗ : r ⇒ q, and a sequence
of simple edges G∗ : t→ q such that the diagram

s r

t q

N

G

N∗

G∗

commutes equationally and level(G∗) < level(s).

Proof. By Lemma A.19, there exists a sequence of basic edges H∗ = H1 . . . Hk such that H∗ ≈ G
and level(H∗) = level(G). For 1 ≤ j ≤ k, assume that Hj : sj → sj+1, with s1 = s and sk+1 = r.

For each 1 ≤ j ≤ k, let Nj : sj → tj be the normal edge originating at sj . Note that N1 = N :
s→ t. By Lemma A.20, there exists a state qj , a sequence of normal edges N∗j : sj+1 ⇒ qj , and a
sequence of simple edges H∗j : tj → qj such that the diagram

sj sj+1

tj qj

Nj

Hj

N∗
j

H∗
j

commutes equationally and level(H∗j ) < level(sj).
Moreover, for every 1 ≤ j ≤ k − 1, N∗j : sj+1 ⇒ qj and Nj+1 : sj+1 ⇒ tj+1 are two sequences

of normal edges with a common source. Hence, by Lemma A.21, there exists a sequence of simple
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edges F ∗j : qj → tj+1 such that the diagram

sj+1

qj tj+1

N∗j Nj+1

F ∗j

commutes equationally and level(F ∗j ) < level(sj+1).
Now let q = qk and define G∗ : t → q by G∗ = H∗k .F

∗
k−1H

∗
k−1 . . .F

∗
2H

∗
2F
∗
1H

∗
1 . Then the

diagram

s r

t q

N

G

N∗

G∗

commutes equationally and level(G∗) < level(s), as desired.
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