
Reducing the CNOT Count for Clifford+T
Circuits on NISQ Architectures

Vlad Gheorghiu2, Sarah Meng Li1, Michele Mosca2, and Priyanka Mukhopadhyay2.

1Department of Mathematics and Statistics, Dalhousie University, Halifax NS, Canada
2Institute for Quantum Computing, University of Waterloo, Waterloo ON, Canada

June 22nd 2021

Compilation: Translating a program to a set of elementary quantum gates.

Implementation: Mapping unitary operations to physical architectures.

Connectivity constraint: Applying a multi-qubit gate on admissible qubits.

1

Background

Clifford+T circuits are quantum circuits over the gate set

{�#$), �,), (, -,. , /}.

• � •
. •

(• /

� •)

2

Clifford+T Circuits

• � •
. •

(• /

� •)

• CNOT acts on two qubits, control 2 and target C :

�#$) |2, C〉 = |2, 2 ⊕ C〉 .

• -, ., /,), (act on a single qubit:

- |C〉 = |C ⊕ 1〉 , . |C〉 = l4C |C ⊕ 1〉 , / |C〉 = l4C |C〉 , (|C〉 = l2C |C〉 ,) |C〉 = lC |C〉 ,

2, C ∈ F2, l = 4
8 c
4 , ⊕ corresponds to Boolean exclusive-OR.

3

Basic Gates

• � •
. •

(• /

� •)

• CNOT acts on two qubits, control 2 and target C :

�#$) |2, C〉 = |2, 2 ⊕ C〉 .

• -, ., /,), (act on a single qubit:

- |C〉 = |C ⊕ 1〉 , . |C〉 = l4C |C ⊕ 1〉 , / |C〉 = l4C |C〉 , (|C〉 = l2C |C〉 ,) |C〉 = lC |C〉 ,

2, C ∈ F2, l = 4
8 c
4 , ⊕ corresponds to Boolean exclusive-OR.

3

Basic Gates

• � •
. •

(• /

� •)

• CNOT acts on two qubits, control 2 and target C :

�#$) |2, C〉 = |2, 2 ⊕ C〉 .

• -, ., /,), (act on a single qubit:

- |C〉 = |C ⊕ 1〉 , . |C〉 = l4C |C ⊕ 1〉 , / |C〉 = l4C |C〉 , (|C〉 = l2C |C〉 ,) |C〉 = lC |C〉 ,

2, C ∈ F2, l = 4
8 c
4 , ⊕ corresponds to Boolean exclusive-OR.

3

Basic Gates

Definition
A graph is a pair � = (+� , ��) where +� is a set of vertices and �� is a set of pairs
4 = (D, E) such that D, E ∈ +� . Each such pair is called an edge.

Remark: We are interested in the simple undirected connected graphs.

• Simple: there is at most one edge between two distinct vertices and no
self-loops.

• Undirected: edges have no direction.

5 6

4

3

7

8

2 1

16

9

15 14

13

12

1110

Rigetti 16Q-Aspen 4

Connectivity Graph

Naively we can insert SWAP operators to move a pair of logical qubits to
physical positions admissible for two-qubit operations.

Example Performing �#$)1,9 under the given connectivity constraint.

1 2 3

4 5 6

7 8 9

9-Qubit Square Grid

|1〉 × × |1〉
|2〉 × × × × |2〉
|5〉 × • × |5〉
|8〉 × × |8〉
|9〉 × × |1 ⊕ 9〉

�#$)1,9 with SWAPs

5

Naive Solution

Naively we can insert SWAP operators to move a pair of logical qubits to
physical positions admissible for two-qubit operations.

Example Performing �#$)1,9 under the given connectivity constraint.

1 2 3

4 5 6

7 8 9

9-Qubit Square Grid

|1〉 × × |1〉
|2〉 × × × × |2〉
|5〉 × • × |5〉
|8〉 × × |8〉
|9〉 × × |1 ⊕ 9〉

�#$)1,9 with SWAPs

5

Naive Solution

|q〉 |k〉
|k〉 |q〉

= |q〉 • |k〉
|k〉 • • |q〉

• If the shortest path length between vertices corresponding to 2 and C in �

is ℓ, the naive solution requires about 6(ℓ − 1) CNOT gates.

• This entails a significant increase in CNOT-count.

• Can we reduce the CNOT-count while respecting the connectivity
constraint?

6

Motivation

We were inspired to use the following techniques.

• Steiner tree problem reduction1 ,2.

• Linear reversible circuits synthesis3.

• Parity network synthesis4.

1Beatrice Nash, Vlad Gheorghiu, and Michele Mosca. “Quantum circuit optimizations for NISQ
architectures”. In: Quantum Science and Technology 5.2 (2020), p. 025010.

2Aleks Kissinger and Arianne Meijer-van de Griend. “CNOT circuit extraction for
topologically-constrained quantum memories”. In: arXiv preprint arXiv:1904.00633 (2019).

3Ketan N Patel, Igor L Markov, and John P Hayes. “Optimal synthesis of linear reversible circuits”.
In: Quantum Information & Computation 8.3 (2008), pp. 282–294.

4Matthew Amy, Parsiad Azimzadeh, and Michele Mosca. “On the controlled-NOT complexity of
controlled-NOT–phase circuits”. In: Quantum Science and Technology 4.1 (2018), p. 015002.

7

Related Work

We were inspired to use the following techniques.

• Steiner tree problem reduction1 ,2.

• Linear reversible circuits synthesis3.

• Parity network synthesis4.

1Nash, Gheorghiu, and Mosca, “Quantum circuit optimizations for NISQ architectures”.
2Kissinger and Griend, “CNOT circuit extraction for topologically-constrained quantum

memories”.
3Patel, Markov, and Hayes, “Optimal synthesis of linear reversible circuits”.
4Amy, Azimzadeh, and Mosca, “On the controlled-NOT complexity of controlled-NOT–phase

circuits”.
7

Related Work

Definition
Given a graph � = (+� , ��) and a set of vertices S ⊆ +� , a Steiner tree
) = (+) , �)) is a minimum spanning tree such that S ⊆ +) .

Example � is a simple undirected graph.

1 2 3

4 5 6

7 8 9

10 11 12

Terminals: S = {1, 6, 7, 11}.

1 2 3

4 5 6

7 8 9

10 11 12

A solution to the Steiner tree problem on �.
Steiner nodes: +) \ S = {4, 5, 8}

8

Steiner Tree

Slice: Partition the circuit based on the locality of H gates.

Build: Re-synthesize the sliced portions so that connectivity is respected and
the CNOT count is reduced.

5Vlad Gheorghiu et al. “Reducing the CNOT count for Clifford+ T circuits on NISQ architectures”.
In: arXiv preprint arXiv:2011.12191 (2020).

9

Slice-and-Build Technique5

•) � •
• . •
(• / �

� •)

=⇒

•) � •
• . •

(• / �

� •)

10

Slice

•) � •
• . •
(• / �

� •)

=⇒

•) � •
• . •

(• / �

� •)

10

Slice

• Each subcircuit is composed of G?ℎ = {�#$),),)†, (, (†, -,. , /}.

• Calculate the phase polynomial P and overall linear transformation AB;824.

• Synthesize a phase polynomial network C?ℎ over G?ℎ .

Phase Polynomial Network Synthesis

• Calculate the overall linear transformation A?ℎ of C?ℎ .

• Derive the residual linear transformation A = A−1
?ℎ
AB;824.

• Synthesize a linear reversible circuit C;8= over {�#$), -}.

Linear Transformation Synthesis

11

Build

• Each subcircuit is composed of G?ℎ = {�#$),),)†, (, (†, -,. , /}.

• Calculate the phase polynomial P and overall linear transformation AB;824.

• Synthesize a phase polynomial network C?ℎ over G?ℎ .

Phase Polynomial Network Synthesis

• Calculate the overall linear transformation A?ℎ of C?ℎ .

• Derive the residual linear transformation A = A−1
?ℎ
AB;824.

• Synthesize a linear reversible circuit C;8= over {�#$), -}.

Linear Transformation Synthesis

11

Build

• Each subcircuit is composed of G?ℎ = {�#$),),)†, (, (†, -,. , /}.

• Calculate the phase polynomial P and overall linear transformation AB;824.

• Synthesize a phase polynomial network C?ℎ over G?ℎ .

Phase Polynomial Network Synthesis

• Calculate the overall linear transformation A?ℎ of C?ℎ .

• Derive the residual linear transformation A = A−1
?ℎ
AB;824.

• Synthesize a linear reversible circuit C;8= over {�#$), -}.

Linear Transformation Synthesis

11

Build

• Each subcircuit is composed of G?ℎ = {�#$),),)†, (, (†, -,. , /}.

• Calculate the phase polynomial P and overall linear transformation AB;824.

• Synthesize a phase polynomial network C?ℎ over G?ℎ .

Phase Polynomial Network Synthesis

• Calculate the overall linear transformation A?ℎ of C?ℎ .

• Derive the residual linear transformation A = A−1
?ℎ
AB;824.

• Synthesize a linear reversible circuit C;8= over {�#$), -}.

Linear Transformation Synthesis

11

Build

• Each subcircuit is composed of G?ℎ = {�#$),),)†, (, (†, -,. , /}.

• Calculate the phase polynomial P and overall linear transformation AB;824.

• Synthesize a phase polynomial network C?ℎ over G?ℎ .

Phase Polynomial Network Synthesis

• Calculate the overall linear transformation A?ℎ of C?ℎ .

• Derive the residual linear transformation A = A−1
?ℎ
AB;824.

• Synthesize a linear reversible circuit C;8= over {�#$), -}.

Linear Transformation Synthesis

11

Build

For an =−qubit circuit over {�#$), -}, we represent the overall linear
transformation using an = × (= + 1) binary matrix.

Example

|G1〉 • |G2〉
|G2〉 • • |G1 ⊕ G2 ⊕ 1〉
|G3〉 • • |G1 ⊕ G2 ⊕ G3 ⊕ 1〉
|G4〉 |G1 ⊕ G2 ⊕ G4 ⊕ 1〉

� =

G1 G2 G3 G4 1©«
ª®®¬

0 1 0 0 0
1 1 0 0 1
1 1 1 0 1
1 1 0 1 1

12

Synthesize Circuits over {�#$), -}

For an =−qubit circuit over {�#$), -}, we represent the overall linear
transformation using an = × (= + 1) binary matrix.

Example

|G1〉 • |G2〉
|G2〉 • • |G1 ⊕ G2 ⊕ 1〉
|G3〉 • • |G1 ⊕ G2 ⊕ G3 ⊕ 1〉
|G4〉 |G1 ⊕ G2 ⊕ G4 ⊕ 1〉

� =

G1 G2 G3 G4 1©«
ª®®¬

0 1 0 0 0
1 1 0 0 1
1 1 1 0 1
1 1 0 1 1

12

Synthesize Circuits over {�#$), -}

For an =−qubit circuit over {�#$), -}, we represent the overall linear
transformation using an = × (= + 1) binary matrix.

Example

|G1〉 • |G2〉
|G2〉 • • |G1 ⊕ G2 ⊕ 1〉
|G3〉 • • |G1 ⊕ G2 ⊕ G3 ⊕ 1〉
|G4〉 |G1 ⊕ G2 ⊕ G4 ⊕ 1〉

� =

G1 G2 G3 G4 1©«
ª®®¬

0 1 0 0 0
1 1 0 0 1
1 1 1 0 1
1 1 0 1 1

12

Synthesize Circuits over {�#$), -}

Reverse Engineering

(a) Make b = 0 by applying - to corresponding qubits.

(b) Carry out an analogue of Gaussian elimination.

(c) Use Steiner tree to incorporate connectivity constraints.

Example Let � be a linear transformation and � be the connectivity graph.

� =

1 1 0 1 1 0
0 0 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 0
1 1 1 1 0 0
0 1 0 1 0 1

� =

1 2 3

6 5 4

13

Linear Transformation Synthesis

Reverse Engineering

(a) Make b = 0 by applying - to corresponding qubits.

(b) Carry out an analogue of Gaussian elimination.

(c) Use Steiner tree to incorporate connectivity constraints.

Example Let � be a linear transformation and � be the connectivity graph.

� =

1 1 0 1 1 0
0 0 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 0
1 1 1 1 0 0
0 1 0 1 0 1

� =

1 2 3

6 5 4

13

Linear Transformation Synthesis

Row Operations I

(a) Starting from the left most column, fix one column at a time.

(b) Fixing the 8th column means applying row operations such that �88 = 1 and
� 98 = 0 for every 9 > 8.

� =

1 1 0 1 1 0
0 0 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 0
1 1 1 1 0 0
0 1 0 1 0 1

)1,{1,3,4,5}=

1 2 3

6 5 4

)1 = 1 2 3

)2 = 3 4

)3 = 4 5

• The Steiner tree)1,S with pivot 1 and terminals S = {1, 3, 4, 5}.

• Invoke a sequence of row operations starting from the last sub-tree)3.
14

Step 1: Reducing � to Upper Triangular Form

� =

1 1 0 1 1 0
0 0 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 0
1 1 1 1 0 0
0 1 0 1 0 1

)1,{1,3,4,5}=

1 2 3

6 5 4

)1 = 1 2 3

)2 = 3 4

)3 = 4 5

• Propagate 1 from the root to cancel the 1 at the leaf.

• Cancel the 1s in the intermediate Steiner nodes.

• After traversing subtrees and concatenating CNOTs,

Y1 = CNOT45CNOT34CNOT12CNOT23CNOT12.

15

G1 ⊕ G2 ⊕ G3

G3 ⊕ G4

G4 ⊕ G5

Step 1: Reducing � to Upper Triangular Form

• When CNOT 9 ,8 is applied, row 9 is added to row 8 mod 2, and row 9 remains
unchanged.

• After a series of row operations, � is reduced to an upper triangular form.

� =

1 1 0 1 1 0
0 0 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 0
1 1 1 1 0 0
0 1 0 1 0 1

Y1−−→ � =

1 1 0 1 1 0
0 0 1 1 0 1
0 1 0 0 0 1
0 1 1 1 1 0
0 0 1 0 0 0
0 1 0 1 0 1

Y2−−→ . . .

Y6−−→ � =

1 1 0 1 1 0
0 1 1 1 0 0
0 0 1 1 0 1
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1

16

Step 1: Reducing � to Upper Triangular Form

Row Operations II

(a) Starting from the left most column, fix one column at a time.

(b) Fixing the 8th column means applying row operations such that �88 = 1 and
� 98 = 0 for every 9 > 8.

� =

1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
1 1 1 1 0 0
1 0 0 0 1 0
0 0 1 1 0 1

)1,{1,2,4,5}=

1 2 3

6 5 4

)1 = 1 2

)2 = 2 5

)3 = 5 4

• A row should be XORed with a row of lower index.

• If not, apply a correction procedure after traversing all sub-trees.
17

G1 ⊕ G2

G2 ⊕ G5

G5 ⊕ G4

Step 2: Reducing �ᵀ to Identity

• Consider circuits over the gate set

G?ℎ = {�#$), -,),)†, (, (†, . , /}.

• �#$) |G, H〉 = |G, G ⊕ H〉,) |G〉 = lG |G〉, where l = 4
8 c
4 and G, H ∈ F2.

Example

|G1〉)1 • •)
†
5

|G2〉

|G2〉 • • • |G1〉

|G3〉 • •)3)4 |G1 ⊕ G2 ⊕ G3 ⊕ G4〉

|G4〉)2 • |G1 ⊕ G2 ⊕ G4〉

18

Synthesize Circuits over {�#$), -,)}

• Consider circuits over the gate set

G?ℎ = {�#$), -,),)†, (, (†, . , /}.

• �#$) |G, H〉 = |G, G ⊕ H〉,) |G〉 = lG |G〉, where l = 4
8 c
4 and G, H ∈ F2.

Example

|G1〉)1 • •)
†
5

|G2〉

|G2〉 • • • |G1〉

|G3〉 • •)3)4 |G1 ⊕ G2 ⊕ G3 ⊕ G4〉

|G4〉)2 • |G1 ⊕ G2 ⊕ G4〉

18

Synthesize Circuits over {�#$), -,)}

• Consider circuits over the gate set

G?ℎ = {�#$), -,),)†, (, (†, . , /}.

• �#$) |G, H〉 = |G, G ⊕ H〉,) |G〉 = lG |G〉, where l = 4
8 c
4 and G, H ∈ F2.

Example

|G1〉)1 • •)
†
5

|G2〉

|G2〉 • • • |G1〉

|G3〉 • •)3)4 |G1 ⊕ G2 ⊕ G3 ⊕ G4〉

|G4〉)2 • |G1 ⊕ G2 ⊕ G4〉

)1 : lG1

)2 : lG3⊕G4

)3 : lG3

)4 : lG1⊕G2⊕G3⊕G4

)5 : l7G2

18

G1

G3 ⊕ G4

G3 G1 ⊕ G2 ⊕ G3 ⊕ G4

G2

Synthesize Circuits over {�#$), -,)}

|G1〉)1 • •)
†
5

|G2〉

|G2〉 • • • |G1〉

|G3〉 • •)3)4 |G1 ⊕ G2 ⊕ G3 ⊕ G4〉

|G4〉)2 • |G1 ⊕ G2 ⊕ G4〉

)1 : lG1

)2 : lG3⊕G4

)3 : lG3

)4 : lG1⊕G2⊕G3⊕G4

)5 : l7G2

• A representation of linear reversible functions: A =

0 1 0 0
1 0 0 0
1 1 1 1
1 1 0 1

 .

• A phase polynomial set: P = {(1, G1), (1, G3 ⊕ G4), (1, G3), (1, G1 ⊕ G2 ⊕ G3 ⊕ G4), (7, G2)}.

• A phase polynomial network: a 4-qubit circuit over {�#$), -,)} such that
for every (2, 5) ∈ P, 5 appears before a gate in {),)†, (, (†, . , /}.

19

Phase Polynomial Network [Amy et al., 2014]

|G1〉)1 • •)
†
5

|G2〉

|G2〉 • • • |G1〉

|G3〉 • •)3)4 |G1 ⊕ G2 ⊕ G3 ⊕ G4〉

|G4〉)2 • |G1 ⊕ G2 ⊕ G4〉

)1 : lG1

)2 : lG3⊕G4

)3 : lG3

)4 : lG1⊕G2⊕G3⊕G4

)5 : l7G2

• A representation of linear reversible functions: A =

0 1 0 0
1 0 0 0
1 1 1 1
1 1 0 1

 .
• A phase polynomial set: P = {(1, G1), (1, G3 ⊕ G4), (1, G3), (1, G1 ⊕ G2 ⊕ G3 ⊕ G4), (7, G2)}.

• A phase polynomial network: a 4-qubit circuit over {�#$), -,)} such that
for every (2, 5) ∈ P, 5 appears before a gate in {),)†, (, (†, . , /}.

19

Phase Polynomial Network [Amy et al., 2014]

|G1〉)1 • •)
†
5

|G2〉

|G2〉 • • • |G1〉

|G3〉 • •)3)4 |G1 ⊕ G2 ⊕ G3 ⊕ G4〉

|G4〉)2 • |G1 ⊕ G2 ⊕ G4〉

)1 : lG1

)2 : lG3⊕G4

)3 : lG3

)4 : lG1⊕G2⊕G3⊕G4

)5 : l7G2

• A representation of linear reversible functions: A =

0 1 0 0
1 0 0 0
1 1 1 1
1 1 0 1

 .
• A phase polynomial set: P = {(1, G1), (1, G3 ⊕ G4), (1, G3), (1, G1 ⊕ G2 ⊕ G3 ⊕ G4), (7, G2)}.

• A phase polynomial network: a 4-qubit circuit over {�#$), -,)} such that
for every (2, 5) ∈ P, 5 appears before a gate in {),)†, (, (†, . , /}.

19

Phase Polynomial Network [Amy et al., 2014]

(a) Calculate a parity network matrix " to represent P.

(b) Construct Steiner tress to impose connectivity constraints.

(c) Synthesize a circuit over {�#$), -} that realizes each column in " .

(d) Apply {),)†, (, (†, . , /} depending on the coefficients of the parity terms
(2, 5) ∈ P.

20

Phase Polynomial Network Synthesis

P = {(1, 1 ⊕ G1 ⊕ G4 ⊕ G5), (2, G2 ⊕ G3 ⊕ G5 ⊕ G6), (4, 1 ⊕ G4 ⊕ G5 ⊕ G6), (4, 1 ⊕ G1 ⊕ G2 ⊕ G6),
(6, 1 ⊕ G1 ⊕ G2 ⊕ G3), (7, 1 ⊕ G1 ⊕ G2 ⊕ G4 ⊕ G6), (1, G2 ⊕ G4 ⊕ G5)}

" =

?1 ?2 ?3 ?4 ?5 ?6 ?7

1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
1 1 1 0 0 0 1
0 1 1 1 0 1 0
1 0 1 1 1 1 0
1 2 4 4 6 7 1

� =

1 2 3

6 5 4

The parity matrix "8×7 and connectivity graph �.

21

Columns Represent Parity Term

P = {(1, 1 ⊕ G1 ⊕ G4 ⊕ G5), (2, G2 ⊕ G3 ⊕ G5 ⊕ G6), (4, 1 ⊕ G4 ⊕ G5 ⊕ G6), (4, 1 ⊕ G1 ⊕ G2 ⊕ G6),
(6, 1 ⊕ G1 ⊕ G2 ⊕ G3), (7, 1 ⊕ G1 ⊕ G2 ⊕ G4 ⊕ G6), (1, G2 ⊕ G4 ⊕ G5)}

" =

?1 ?2 ?3 ?4 ?5 ?6 ?7

1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
1 1 1 0 0 0 1
0 1 1 1 0 1 0
1 0 1 1 1 1 0
1 2 4 4 6 7 1

� =

1 2 3

6 5 4

The parity matrix "8×7 and connectivity graph �.

21

Top Six Rows Encode Parity

P = {(1, 1 ⊕ G1 ⊕ G4 ⊕ G5), (2, G2 ⊕ G3 ⊕ G5 ⊕ G6), (4, 1 ⊕ G4 ⊕ G5 ⊕ G6), (4, 1 ⊕ G1 ⊕ G2 ⊕ G6),
(6, 1 ⊕ G1 ⊕ G2 ⊕ G3), (7, 1 ⊕ G1 ⊕ G2 ⊕ G4 ⊕ G6), (1, G2 ⊕ G4 ⊕ G5)}

" =

?1 ?2 ?3 ?4 ?5 ?6 ?7

1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
1 1 1 0 0 0 1
0 1 1 1 0 1 0
1 0 1 1 1 1 0
1 2 4 4 6 7 1

� =

1 2 3

6 5 4

The parity matrix "8×7 and connectivity graph �.

21

The 7th Row Encodes Bit Flip

P = {(1, 1 ⊕ G1 ⊕ G4 ⊕ G5), (2, G2 ⊕ G3 ⊕ G5 ⊕ G6), (4, 1 ⊕ G4 ⊕ G5 ⊕ G6), (4, 1 ⊕ G1 ⊕ G2 ⊕ G6),
(6, 1 ⊕ G1 ⊕ G2 ⊕ G3), (7, 1 ⊕ G1 ⊕ G2 ⊕ G4 ⊕ G6), (1, G2 ⊕ G4 ⊕ G5)}

" =

?1 ?2 ?3 ?4 ?5 ?6 ?7

1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
1 1 1 0 0 0 1
0 1 1 1 0 1 0
1 0 1 1 1 1 0
1 2 4 4 6 7 1

� =

1 2 3

6 5 4

The parity matrix "8×7 and connectivity graph �.

21

The Last Row Stores Coefficients

We simulated benchmarks and random circuits on five popular architectures
such as (1) 9-qubit square grid, (2) Rigetti 16-qubit Aspen, (3) 16-qubit square
grid, (4) 16-qubit IBM QX5, and (5) 20-qubit IBM Tokyo.

5 6

4

3

7

8

2 1

16

9

15 14

13

12

1110

(2) Rigetti 16Q-Aspen

1 2 5 6

16 3 4 7

15 12 11 8

14 13 10 9

(3) 16q-Square Grid

22

Implementation

Architecture #Qubits Initial SWAP-template Slide-and-Build
count Count Count Time

9q-square 9

3 560% 0% 0.184s
5 612% 146% 0.146s
10 594% 105% 0.167s
20 546% 176% 0.2s
30 596% 185% 0.233s

16q-square 16

4 1050% 238% 0.23s
8 840% 146% 0.27s
16 818% 158% 0.43s
32 853% 341% 0.41s
64 893% 221% 0.49s
128 859% 211% 0.57s
256 897% 238% 0.72s

rigetti-16q-aspen 16

4 1680% 355% 0.23s
8 1740% 253% 0.396s
16 1620% 351% 0.47s
32 1794% 470% 0.48s
64 1755% 399% 0.66s
128 1761% 368% 0.58s
256 1757% 411% 0.61s

23

Compare the Increase in CNOT-Count

Architecture #Qubits Initial SWAP-template Slide-and-Build
count Count Count Time

9q-square 9

3 560% 0% 0.184s
5 612% 146% 0.146s
10 594% 105% 0.167s
20 546% 176% 0.2s
30 596% 185% 0.233s

16q-square 16

4 1050% 238% 0.23s
8 840% 146% 0.27s
16 818% 158% 0.43s
32 853% 341% 0.41s
64 893% 221% 0.49s
128 859% 211% 0.57s
256 897% 238% 0.72s

rigetti-16q-aspen 16

4 1680% 355% 0.23s
8 1740% 253% 0.396s
16 1620% 351% 0.47s
32 1794% 470% 0.48s
64 1755% 399% 0.66s
128 1761% 368% 0.58s
256 1757% 411% 0.61s

23

Compare the Increase in CNOT Count

Architecture #Qubits Initial SWAP-template Slide-and-Build
count Count Count Time

ibm-qx5 16

4 1260% 173% 0.38s
8 1035% 295% 0.36s
16 1043% 283% 0.41s
32 1179% 398% 0.42s
64 1131% 339% 0.45s
128 1111% 345% 0.575s
256 1141% 380% 0.73s

ibm-q20-tokyo 20

4 525% 128% 0.186s
8 555% 275% 0.295s
16 570% 88% 0.37s
32 501% 154% 0.55s
64 543% 137% 0.54s
128 540% 141% 0.645s
256 535% 125% 0.72s

24

Compare the Increase in CNOT Count

• We designed a heuristic algorithm that reduces the CNOT count in
Clifford+T circuits while accounting for the connectivity constraints.

• It’s possible to improve the results by optimizing the initial mapping from
logical qubits to physical qubits.

• Moving forward, we would like to rigorously benchmark against other
compilers such as tket by CQC and Qiskit by IBM.

25

Conclusion

Thank you!

• A node (row) should be XORed with a row with a higher-index.

• If not, apply a correction procedure after traversing all sub-trees.

Example Work with a violation in)3.

)1, {1,2,4,5}=
1 2 3

6 5 4

)1 = 1 2

)2 = 2 5

)3 = 5 4

) ′3 = 5 4

• Take the shortest path from 5 to 4 and apply the same traversals: CNOT54

• The parity at 4 becomes G ′4 ⊕ G ′5 = (G5 ⊕ G4) ⊕ (G2 ⊕ G5) = G4 ⊕ G2.

26

G′2 = G1 ⊕ G2

G′5 = G2 ⊕ G5 G2 ⊕ G5 G4 ⊕ G2

G′4 = G5 ⊕ G4

Avoid Disturbing 0s’ in Upper Triangle

P = {(1, 1 ⊕ G1 ⊕ G4 ⊕ G5), (2, G2 ⊕ G3 ⊕ G5 ⊕ G6), (4, 1 ⊕ G4 ⊕ G5 ⊕ G6), (4, 1 ⊕ G1 ⊕ G2 ⊕ G6),
(6, 1 ⊕ G1 ⊕ G2 ⊕ G3), (7, 1 ⊕ G1 ⊕ G2 ⊕ G4 ⊕ G6), (1, G2 ⊕ G4 ⊕ G5)}

% =

?1 ?2 ?3 ?4 ?5 ?6 ?7

1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
1 1 1 0 0 0 1
0 1 1 1 0 1 0
1 0 1 1 1 1 0
1 2 4 4 6 7 1

� =

1 2 3

6 5 4

The parity matrix %8×7 and connectivity graph �.

27

Columns Represent Parity Term

P = {(1, 1 ⊕ G1 ⊕ G4 ⊕ G5), (2, G2 ⊕ G3 ⊕ G5 ⊕ G6), (4, 1 ⊕ G4 ⊕ G5 ⊕ G6), (4, 1 ⊕ G1 ⊕ G2 ⊕ G6),
(6, 1 ⊕ G1 ⊕ G2 ⊕ G3), (7, 1 ⊕ G1 ⊕ G2 ⊕ G4 ⊕ G6), (1, G2 ⊕ G4 ⊕ G5)}

% =

?1 ?2 ?3 ?4 ?5 ?6 ?7

1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
1 1 1 0 0 0 1
0 1 1 1 0 1 0
1 0 1 1 1 1 0
1 2 4 4 6 7 1

� =

1 2 3

6 5 4

The parity matrix %8×7 and connectivity graph �.

27

Top Six Rows Encode Parity

P = {(1, 1 ⊕ G1 ⊕ G4 ⊕ G5), (2, G2 ⊕ G3 ⊕ G5 ⊕ G6), (4, 1 ⊕ G4 ⊕ G5 ⊕ G6), (4, 1 ⊕ G1 ⊕ G2 ⊕ G6),
(6, 1 ⊕ G1 ⊕ G2 ⊕ G3), (7, 1 ⊕ G1 ⊕ G2 ⊕ G4 ⊕ G6), (1, G2 ⊕ G4 ⊕ G5)}

% =

?1 ?2 ?3 ?4 ?5 ?6 ?7

1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
1 1 1 0 0 0 1
0 1 1 1 0 1 0
1 0 1 1 1 1 0
1 2 4 4 6 7 1

� =

1 2 3

6 5 4

The parity matrix %8×7 and connectivity graph �.

27

The 7th Row Encodes Bit Flip

P = {(1, 1 ⊕ G1 ⊕ G4 ⊕ G5), (2, G2 ⊕ G3 ⊕ G5 ⊕ G6), (4, 1 ⊕ G4 ⊕ G5 ⊕ G6), (4, 1 ⊕ G1 ⊕ G2 ⊕ G6),
(6, 1 ⊕ G1 ⊕ G2 ⊕ G3), (7, 1 ⊕ G1 ⊕ G2 ⊕ G4 ⊕ G6), (1, G2 ⊕ G4 ⊕ G5)}

% =

?1 ?2 ?3 ?4 ?5 ?6 ?7

1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
1 1 1 0 0 0 1
0 1 1 1 0 1 0
1 0 1 1 1 1 0
1 2 4 4 6 7 1

� =

1 2 3

6 5 4

The parity matrix %8×7 and connectivity graph �.

27

The Last Row Stores Coefficients

• Ignore the last two rows of %, let � = {?′1, ?′2, ?′3, ?′4, ?′5, ?′6, ?′7}, K be an empty
stack, and � = [6].
• Cycle through the set of =-bit strings and apply corresponding �#$) gates

at each iteration.

• Whenever a column has a single 1, it implies that the corresponding parity
has been realized.

Example After the 4th iteration, we have

� (4) =

?′1 ?′2 ?′3 ?′4 ?′5 ?′6 ?′7
1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
0 1 0 0 0 1 0
1 0 0 1 0 1 1

28

PHASE-NW-SYNTH Algorithm Snapshot

• Whenever a column has a single 1, it implies that the corresponding parity
has been realized.
• Remove these columns from the remaining parities.

• Place the gate X if parity realized on circuit is 1 ⊕ 5 for some (2, 5) ∈ P. We
can also place a gate in {T, T†,S,S†,Z,Y} corresponding to the value of the
coefficient 2.

Example The partial circuit obtained after applying a sequence of gates from
iteration 4.

� (4) =

?′1 ?′2 ?′3 ?′4 ?′5 ?′6 ?′7
1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
0 1 0 0 0 1 0
1 0 0 1 0 1 1

G1 G1
G2 G2
G3 G3

G4 -/ 1 ⊕ G4 ⊕ G5 ⊕ G6

G5 • G5 ⊕ G6
G6 • G6

29

PHASE-NW-SYNTH Algorithm Snapshot

	Introduction

