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Compilation: Translating a program to a set of elementary quantum gates.

Implementation: Mapping unitary operations to physical architectures.

Connectivity constraint: Applying a multi-qubit gate on admissible qubits.

1

Background



Clifford+T circuits are quantum circuits over the gate set

{�#$), �,), (, -,. , /}.

• � •
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� • )
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Clifford+T Circuits



• � •
. •

( • /

� • )

• CNOT acts on two qubits, control 2 and target C :

�#$) |2, C〉 = |2, 2 ⊕ C〉 .

• -, ., /, ), ( act on a single qubit:

- |C〉 = |C ⊕ 1〉 , . |C〉 = l4C |C ⊕ 1〉 , / |C〉 = l4C |C〉 , ( |C〉 = l2C |C〉 , ) |C〉 = lC |C〉 ,

2, C ∈ F2, l = 4
8 c
4 , ⊕ corresponds to Boolean exclusive-OR.
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Basic Gates



Definition
A graph is a pair � = (+� , ��) where +� is a set of vertices and �� is a set of pairs
4 = (D, E) such that D, E ∈ +� . Each such pair is called an edge.

Remark: We are interested in the simple undirected connected graphs.

• Simple: there is at most one edge between two distinct vertices and no
self-loops.

• Undirected: edges have no direction.
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Naively we can insert SWAP operators to move a pair of logical qubits to
physical positions admissible for two-qubit operations.

Example Performing �#$)1,9 under the given connectivity constraint.

1 2 3

4 5 6

7 8 9

9-Qubit Square Grid

|1〉 × × |1〉
|2〉 × × × × |2〉
|5〉 × • × |5〉
|8〉 × × |8〉
|9〉 × × |1 ⊕ 9〉

�#$)1,9 with SWAPs
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Naive Solution



|q〉 |k〉
|k〉 |q〉

= |q〉 • |k〉
|k〉 • • |q〉

• If the shortest path length between vertices corresponding to 2 and C in �

is ℓ, the naive solution requires about 6(ℓ − 1) CNOT gates.

• This entails a significant increase in CNOT-count.

• Can we reduce the CNOT-count while respecting the connectivity
constraint?
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Motivation



We were inspired to use the following techniques.

• Steiner tree problem reduction1 ,2.

• Linear reversible circuits synthesis3.

• Parity network synthesis4.

1Beatrice Nash, Vlad Gheorghiu, and Michele Mosca. “Quantum circuit optimizations for NISQ
architectures”. In: Quantum Science and Technology 5.2 (2020), p. 025010.

2Aleks Kissinger and Arianne Meijer-van de Griend. “CNOT circuit extraction for
topologically-constrained quantum memories”. In: arXiv preprint arXiv:1904.00633 (2019).

3Ketan N Patel, Igor L Markov, and John P Hayes. “Optimal synthesis of linear reversible circuits”.
In: Quantum Information & Computation 8.3 (2008), pp. 282–294.

4Matthew Amy, Parsiad Azimzadeh, and Michele Mosca. “On the controlled-NOT complexity of
controlled-NOT–phase circuits”. In: Quantum Science and Technology 4.1 (2018), p. 015002.
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1Nash, Gheorghiu, and Mosca, “Quantum circuit optimizations for NISQ architectures”.
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Definition
Given a graph � = (+� , ��) and a set of vertices S ⊆ +� , a Steiner tree
) = (+) , �) ) is a minimum spanning tree such that S ⊆ +) .

Example � is a simple undirected graph.

1 2 3

4 5 6

7 8 9

10 11 12

Terminals: S = {1, 6, 7, 11}.

1 2 3

4 5 6

7 8 9

10 11 12

A solution to the Steiner tree problem on �.
Steiner nodes: +) \ S = {4, 5, 8}

8

Steiner Tree



Slice: Partition the circuit based on the locality of H gates.

Build: Re-synthesize the sliced portions so that connectivity is respected and
the CNOT count is reduced.

5Vlad Gheorghiu et al. “Reducing the CNOT count for Clifford+ T circuits on NISQ architectures”.
In: arXiv preprint arXiv:2011.12191 (2020).
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Slice-and-Build Technique5
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Slice



• ) � •
• . •
( • / �

� • )

=⇒

• ) � •
• . •

( • / �

� • )

10

Slice



• Each subcircuit is composed of G?ℎ = {�#$),), )†, (, (†, -,. , /}.

• Calculate the phase polynomial P and overall linear transformation AB;824.

• Synthesize a phase polynomial network C?ℎ over G?ℎ .

Phase Polynomial Network Synthesis

• Calculate the overall linear transformation A?ℎ of C?ℎ .

• Derive the residual linear transformation A = A−1
?ℎ
AB;824.

• Synthesize a linear reversible circuit C;8= over {�#$), -}.

Linear Transformation Synthesis

11
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Build



For an =−qubit circuit over {�#$), -}, we represent the overall linear
transformation using an = × (= + 1) binary matrix.

Example

|G1〉 • |G2〉
|G2〉 • • |G1 ⊕ G2 ⊕ 1〉
|G3〉 • • |G1 ⊕ G2 ⊕ G3 ⊕ 1〉
|G4〉 |G1 ⊕ G2 ⊕ G4 ⊕ 1〉

� =

G1 G2 G3 G4 1©«
ª®®¬

0 1 0 0 0
1 1 0 0 1
1 1 1 0 1
1 1 0 1 1
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Synthesize Circuits over {�#$), -}
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Reverse Engineering

(a) Make b = 0 by applying - to corresponding qubits.

(b) Carry out an analogue of Gaussian elimination.

(c) Use Steiner tree to incorporate connectivity constraints.

Example Let � be a linear transformation and � be the connectivity graph.

� =



1 1 0 1 1 0
0 0 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 0
1 1 1 1 0 0
0 1 0 1 0 1


� =

1 2 3

6 5 4
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Linear Transformation Synthesis
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Linear Transformation Synthesis



Row Operations I

(a) Starting from the left most column, fix one column at a time.

(b) Fixing the 8th column means applying row operations such that �88 = 1 and
� 98 = 0 for every 9 > 8.

� =



1 1 0 1 1 0
0 0 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 0
1 1 1 1 0 0
0 1 0 1 0 1


)1,{1,3,4,5}=

1 2 3

6 5 4

)1 = 1 2 3

)2 = 3 4

)3 = 4 5

• The Steiner tree )1,S with pivot 1 and terminals S = {1, 3, 4, 5}.

• Invoke a sequence of row operations starting from the last sub-tree )3.
14

Step 1: Reducing � to Upper Triangular Form



� =



1 1 0 1 1 0
0 0 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 0
1 1 1 1 0 0
0 1 0 1 0 1


)1,{1,3,4,5}=

1 2 3

6 5 4

)1 = 1 2 3

)2 = 3 4

)3 = 4 5

• Propagate 1 from the root to cancel the 1 at the leaf.

• Cancel the 1s in the intermediate Steiner nodes.

• After traversing subtrees and concatenating CNOTs,

Y1 = CNOT45CNOT34CNOT12CNOT23CNOT12.

15

G1 ⊕ G2 ⊕ G3

G3 ⊕ G4

G4 ⊕ G5

Step 1: Reducing � to Upper Triangular Form



• When CNOT 9 ,8 is applied, row 9 is added to row 8 mod 2, and row 9 remains
unchanged.

• After a series of row operations, � is reduced to an upper triangular form.

� =



1 1 0 1 1 0
0 0 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 0
1 1 1 1 0 0
0 1 0 1 0 1


Y1−−→ � =



1 1 0 1 1 0
0 0 1 1 0 1
0 1 0 0 0 1
0 1 1 1 1 0
0 0 1 0 0 0
0 1 0 1 0 1


Y2−−→ . . .

Y6−−→ � =



1 1 0 1 1 0
0 1 1 1 0 0
0 0 1 1 0 1
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1
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Step 1: Reducing � to Upper Triangular Form



Row Operations II

(a) Starting from the left most column, fix one column at a time.

(b) Fixing the 8th column means applying row operations such that �88 = 1 and
� 98 = 0 for every 9 > 8.

� =



1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
1 1 1 1 0 0
1 0 0 0 1 0
0 0 1 1 0 1


)1,{1,2,4,5}=

1 2 3

6 5 4

)1 = 1 2

)2 = 2 5

)3 = 5 4

• A row should be XORed with a row of lower index.

• If not, apply a correction procedure after traversing all sub-trees.
17

G1 ⊕ G2

G2 ⊕ G5

G5 ⊕ G4

Step 2: Reducing �ᵀ to Identity



• Consider circuits over the gate set

G?ℎ = {�#$), -, ), )†, (, (†, . , /}.

• �#$) |G, H〉 = |G, G ⊕ H〉, ) |G〉 = lG |G〉, where l = 4
8 c
4 and G, H ∈ F2.

Example

|G1〉 )1 • • )
†
5

|G2〉

|G2〉 • • • |G1〉

|G3〉 • • )3 )4 |G1 ⊕ G2 ⊕ G3 ⊕ G4〉

|G4〉 )2 • |G1 ⊕ G2 ⊕ G4〉

18

Synthesize Circuits over {�#$), -, )}



• Consider circuits over the gate set

G?ℎ = {�#$), -, ), )†, (, (†, . , /}.

• �#$) |G, H〉 = |G, G ⊕ H〉, ) |G〉 = lG |G〉, where l = 4
8 c
4 and G, H ∈ F2.

Example

|G1〉 )1 • • )
†
5

|G2〉

|G2〉 • • • |G1〉

|G3〉 • • )3 )4 |G1 ⊕ G2 ⊕ G3 ⊕ G4〉

|G4〉 )2 • |G1 ⊕ G2 ⊕ G4〉

18

Synthesize Circuits over {�#$), -, )}



• Consider circuits over the gate set

G?ℎ = {�#$), -, ), )†, (, (†, . , /}.

• �#$) |G, H〉 = |G, G ⊕ H〉, ) |G〉 = lG |G〉, where l = 4
8 c
4 and G, H ∈ F2.

Example

|G1〉 )1 • • )
†
5

|G2〉

|G2〉 • • • |G1〉

|G3〉 • • )3 )4 |G1 ⊕ G2 ⊕ G3 ⊕ G4〉

|G4〉 )2 • |G1 ⊕ G2 ⊕ G4〉

)1 : lG1

)2 : lG3⊕G4

)3 : lG3

)4 : lG1⊕G2⊕G3⊕G4

)5 : l7G2
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G1

G3 ⊕ G4

G3 G1 ⊕ G2 ⊕ G3 ⊕ G4

G2

Synthesize Circuits over {�#$), -, )}



|G1〉 )1 • • )
†
5

|G2〉

|G2〉 • • • |G1〉

|G3〉 • • )3 )4 |G1 ⊕ G2 ⊕ G3 ⊕ G4〉

|G4〉 )2 • |G1 ⊕ G2 ⊕ G4〉

)1 : lG1

)2 : lG3⊕G4

)3 : lG3

)4 : lG1⊕G2⊕G3⊕G4

)5 : l7G2

• A representation of linear reversible functions: A =


0 1 0 0
1 0 0 0
1 1 1 1
1 1 0 1

 .

• A phase polynomial set: P = {(1, G1), (1, G3 ⊕ G4), (1, G3), (1, G1 ⊕ G2 ⊕ G3 ⊕ G4), (7, G2)}.

• A phase polynomial network: a 4-qubit circuit over {�#$), -, )} such that
for every (2, 5 ) ∈ P, 5 appears before a gate in {),)†, (, (†, . , /}.

19

Phase Polynomial Network [Amy et al., 2014]
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Phase Polynomial Network [Amy et al., 2014]



(a) Calculate a parity network matrix " to represent P.

(b) Construct Steiner tress to impose connectivity constraints.

(c) Synthesize a circuit over {�#$), -} that realizes each column in " .

(d) Apply {),)†, (, (†, . , /} depending on the coefficients of the parity terms
(2, 5 ) ∈ P.

20

Phase Polynomial Network Synthesis



P = {(1, 1 ⊕ G1 ⊕ G4 ⊕ G5), (2, G2 ⊕ G3 ⊕ G5 ⊕ G6), (4, 1 ⊕ G4 ⊕ G5 ⊕ G6), (4, 1 ⊕ G1 ⊕ G2 ⊕ G6),
(6, 1 ⊕ G1 ⊕ G2 ⊕ G3), (7, 1 ⊕ G1 ⊕ G2 ⊕ G4 ⊕ G6), (1, G2 ⊕ G4 ⊕ G5)}

" =



?1 ?2 ?3 ?4 ?5 ?6 ?7

1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
1 1 1 0 0 0 1
0 1 1 1 0 1 0
1 0 1 1 1 1 0
1 2 4 4 6 7 1


� =

1 2 3

6 5 4

The parity matrix "8×7 and connectivity graph �.
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Columns Represent Parity Term
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Top Six Rows Encode Parity
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� =

1 2 3

6 5 4

The parity matrix "8×7 and connectivity graph �.
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The 7th Row Encodes Bit Flip
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The Last Row Stores Coefficients



We simulated benchmarks and random circuits on five popular architectures
such as (1) 9-qubit square grid, (2) Rigetti 16-qubit Aspen, (3) 16-qubit square
grid, (4) 16-qubit IBM QX5, and (5) 20-qubit IBM Tokyo.

5 6

4

3

7

8

2 1

16

9

15 14

13

12

1110

(2) Rigetti 16Q-Aspen

1 2 5 6

16 3 4 7

15 12 11 8

14 13 10 9

(3) 16q-Square Grid
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Implementation



Architecture #Qubits Initial SWAP-template Slide-and-Build
count Count Count Time

9q-square 9

3 560% 0% 0.184s
5 612% 146% 0.146s
10 594% 105% 0.167s
20 546% 176% 0.2s
30 596% 185% 0.233s

16q-square 16

4 1050% 238% 0.23s
8 840% 146% 0.27s
16 818% 158% 0.43s
32 853% 341% 0.41s
64 893% 221% 0.49s
128 859% 211% 0.57s
256 897% 238% 0.72s

rigetti-16q-aspen 16

4 1680% 355% 0.23s
8 1740% 253% 0.396s
16 1620% 351% 0.47s
32 1794% 470% 0.48s
64 1755% 399% 0.66s
128 1761% 368% 0.58s
256 1757% 411% 0.61s

23

Compare the Increase in CNOT-Count
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4 1050% 238% 0.23s
8 840% 146% 0.27s
16 818% 158% 0.43s
32 853% 341% 0.41s
64 893% 221% 0.49s
128 859% 211% 0.57s
256 897% 238% 0.72s

rigetti-16q-aspen 16

4 1680% 355% 0.23s
8 1740% 253% 0.396s
16 1620% 351% 0.47s
32 1794% 470% 0.48s
64 1755% 399% 0.66s
128 1761% 368% 0.58s
256 1757% 411% 0.61s
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Compare the Increase in CNOT Count



Architecture #Qubits Initial SWAP-template Slide-and-Build
count Count Count Time

ibm-qx5 16

4 1260% 173% 0.38s
8 1035% 295% 0.36s
16 1043% 283% 0.41s
32 1179% 398% 0.42s
64 1131% 339% 0.45s
128 1111% 345% 0.575s
256 1141% 380% 0.73s

ibm-q20-tokyo 20

4 525% 128% 0.186s
8 555% 275% 0.295s
16 570% 88% 0.37s
32 501% 154% 0.55s
64 543% 137% 0.54s
128 540% 141% 0.645s
256 535% 125% 0.72s
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Compare the Increase in CNOT Count



• We designed a heuristic algorithm that reduces the CNOT count in
Clifford+T circuits while accounting for the connectivity constraints.

• It’s possible to improve the results by optimizing the initial mapping from
logical qubits to physical qubits.

• Moving forward, we would like to rigorously benchmark against other
compilers such as tket by CQC and Qiskit by IBM.
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Conclusion



Thank you!



• A node (row) should be XORed with a row with a higher-index.

• If not, apply a correction procedure after traversing all sub-trees.

Example Work with a violation in )3.

)1, {1,2,4,5}=
1 2 3

6 5 4

)1 = 1 2

)2 = 2 5

)3 = 5 4

) ′3 = 5 4

• Take the shortest path from 5 to 4 and apply the same traversals: CNOT54

• The parity at 4 becomes G ′4 ⊕ G ′5 = (G5 ⊕ G4) ⊕ (G2 ⊕ G5) = G4 ⊕ G2.
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G′2 = G1 ⊕ G2

G′5 = G2 ⊕ G5 G2 ⊕ G5 G4 ⊕ G2

G′4 = G5 ⊕ G4

Avoid Disturbing 0s’ in Upper Triangle



P = {(1, 1 ⊕ G1 ⊕ G4 ⊕ G5), (2, G2 ⊕ G3 ⊕ G5 ⊕ G6), (4, 1 ⊕ G4 ⊕ G5 ⊕ G6), (4, 1 ⊕ G1 ⊕ G2 ⊕ G6),
(6, 1 ⊕ G1 ⊕ G2 ⊕ G3), (7, 1 ⊕ G1 ⊕ G2 ⊕ G4 ⊕ G6), (1, G2 ⊕ G4 ⊕ G5)}

% =



?1 ?2 ?3 ?4 ?5 ?6 ?7

1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
1 1 1 0 0 0 1
0 1 1 1 0 1 0
1 0 1 1 1 1 0
1 2 4 4 6 7 1


� =

1 2 3

6 5 4

The parity matrix %8×7 and connectivity graph �.
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Columns Represent Parity Term



P = {(1, 1 ⊕ G1 ⊕ G4 ⊕ G5), (2, G2 ⊕ G3 ⊕ G5 ⊕ G6), (4, 1 ⊕ G4 ⊕ G5 ⊕ G6), (4, 1 ⊕ G1 ⊕ G2 ⊕ G6),
(6, 1 ⊕ G1 ⊕ G2 ⊕ G3), (7, 1 ⊕ G1 ⊕ G2 ⊕ G4 ⊕ G6), (1, G2 ⊕ G4 ⊕ G5)}

% =



?1 ?2 ?3 ?4 ?5 ?6 ?7

1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
1 1 1 0 0 0 1
0 1 1 1 0 1 0
1 0 1 1 1 1 0
1 2 4 4 6 7 1


� =

1 2 3

6 5 4

The parity matrix %8×7 and connectivity graph �.
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Top Six Rows Encode Parity



P = {(1, 1 ⊕ G1 ⊕ G4 ⊕ G5), (2, G2 ⊕ G3 ⊕ G5 ⊕ G6), (4, 1 ⊕ G4 ⊕ G5 ⊕ G6), (4, 1 ⊕ G1 ⊕ G2 ⊕ G6),
(6, 1 ⊕ G1 ⊕ G2 ⊕ G3), (7, 1 ⊕ G1 ⊕ G2 ⊕ G4 ⊕ G6), (1, G2 ⊕ G4 ⊕ G5)}

% =



?1 ?2 ?3 ?4 ?5 ?6 ?7

1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
1 1 1 0 0 0 1
0 1 1 1 0 1 0
1 0 1 1 1 1 0
1 2 4 4 6 7 1


� =

1 2 3

6 5 4

The parity matrix %8×7 and connectivity graph �.
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The 7th Row Encodes Bit Flip



P = {(1, 1 ⊕ G1 ⊕ G4 ⊕ G5), (2, G2 ⊕ G3 ⊕ G5 ⊕ G6), (4, 1 ⊕ G4 ⊕ G5 ⊕ G6), (4, 1 ⊕ G1 ⊕ G2 ⊕ G6),
(6, 1 ⊕ G1 ⊕ G2 ⊕ G3), (7, 1 ⊕ G1 ⊕ G2 ⊕ G4 ⊕ G6), (1, G2 ⊕ G4 ⊕ G5)}

% =



?1 ?2 ?3 ?4 ?5 ?6 ?7

1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
1 1 1 0 0 0 1
0 1 1 1 0 1 0
1 0 1 1 1 1 0
1 2 4 4 6 7 1


� =

1 2 3

6 5 4

The parity matrix %8×7 and connectivity graph �.
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The Last Row Stores Coefficients



• Ignore the last two rows of %, let � = {?′1, ?′2, ?′3, ?′4, ?′5, ?′6, ?′7}, K be an empty
stack, and � = [6].
• Cycle through the set of =-bit strings and apply corresponding �#$) gates

at each iteration.

• Whenever a column has a single 1, it implies that the corresponding parity
has been realized.

Example After the 4th iteration, we have

� (4) =



?′1 ?′2 ?′3 ?′4 ?′5 ?′6 ?′7
1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
0 1 0 0 0 1 0
1 0 0 1 0 1 1
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PHASE-NW-SYNTH Algorithm Snapshot



• Whenever a column has a single 1, it implies that the corresponding parity
has been realized.
• Remove these columns from the remaining parities.

• Place the gate X if parity realized on circuit is 1 ⊕ 5 for some (2, 5 ) ∈ P. We
can also place a gate in {T, T†,S,S†,Z,Y} corresponding to the value of the
coefficient 2.

Example The partial circuit obtained after applying a sequence of gates from
iteration 4.

� (4) =



?′1 ?′2 ?′3 ?′4 ?′5 ?′6 ?′7
1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
0 1 0 0 0 1 0
1 0 0 1 0 1 1



G1 G1
G2 G2
G3 G3

G4 -/ 1 ⊕ G4 ⊕ G5 ⊕ G6

G5 • G5 ⊕ G6
G6 • G6
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PHASE-NW-SYNTH Algorithm Snapshot
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