Reducing the CNOT Count for Clifford+T Circuits on NISQ Architectures

Vlad Gheorghiu², Sarah Meng Li¹, Michele Mosca², and Priyanka Mukhopadhyay².

¹Department of Mathematics and Statistics, Dalhousie University, Halifax NS, Canada ²Institute for Quantum Computing, University of Waterloo, Waterloo ON, Canada

June 22nd 2021

Compilation: Translating a program to a set of elementary quantum gates.

Implementation: Mapping unitary operations to physical architectures.

Connectivity constraint: Applying a multi-qubit gate on admissible qubits.

Clifford+T circuits are quantum circuits over the gate set

 $\{CNOT, H, T, S, X, Y, Z\}.$

Basic Gates

• CNOT acts on two qubits, control c and target t:

 $CNOT | c, t \rangle = | c, c \oplus t \rangle.$

• X, Y, Z, T, S act on a single qubit:

 $X |t\rangle = |t \oplus 1\rangle, \ Y |t\rangle = \omega^{4t} |t \oplus 1\rangle, \ Z |t\rangle = \omega^{4t} |t\rangle, \ S |t\rangle = \omega^{2t} |t\rangle, \ T |t\rangle = \omega^{t} |t\rangle,$ $c, t \in \mathbb{F}_{2}, \ \omega = e^{\frac{i\pi}{4}}, \ \oplus \text{ corresponds to Boolean exclusive-OR.}$

Basic Gates

• CNOT acts on two qubits, control c and target t :

 $CNOT | c, t \rangle = | c, c \oplus t \rangle.$

• X, Y, Z, T, S act on a single qubit:

 $\boldsymbol{X} |t\rangle = |t \oplus 1\rangle, \ \boldsymbol{Y} |t\rangle = \omega^{4t} |t \oplus 1\rangle, \ \boldsymbol{Z} |t\rangle = \omega^{4t} |t\rangle, \ \boldsymbol{S} |t\rangle = \omega^{2t} |t\rangle, \ \boldsymbol{T} |t\rangle = \omega^{t} |t\rangle,$

 $c, t \in \mathbb{F}_2, \ \omega = e^{\frac{i\pi}{4}}, \ \oplus \text{ corresponds to Boolean exclusive-OR.}$

Basic Gates

• CNOT acts on two qubits, control c and target t :

 $CNOT | c, t \rangle = | c, c \oplus t \rangle.$

• X, Y, Z, T, S act on a single qubit:

 $X |t\rangle = |t \oplus 1\rangle, \ Y |t\rangle = \omega^{4t} |t \oplus 1\rangle, \ Z |t\rangle = \omega^{4t} |t\rangle, \ S |t\rangle = \omega^{2t} |t\rangle, \ T |t\rangle = \omega^{t} |t\rangle,$

 $c, t \in \mathbb{F}_2, \ \omega = e^{\frac{i\pi}{4}}, \ \oplus \text{ corresponds to Boolean exclusive-OR.}$

Connectivity Graph

Definition

A **graph** is a pair $G = (V_G, E_G)$ where V_G is a set of vertices and E_G is a set of pairs e = (u, v) such that $u, v \in V_G$. Each such pair is called an *edge*.

Remark: We are interested in the *simple undirected connected graphs*.

- Simple: there is at most one edge between two distinct vertices and no self-loops.
- Undirected: edges have no direction.

Rigetti 16Q-Aspen

Naively we can insert SWAP operators to move a pair of logical qubits to physical positions admissible for two-qubit operations.

Example Performing $CNOT_{1,9}$ under the given connectivity constraint.

9-Qubit Square Grid

CNOT_{1,9} with SWAPs

Naively we can insert SWAP operators to move a pair of logical qubits to physical positions admissible for two-qubit operations.

Example Performing $CNOT_{1,9}$ under the given connectivity constraint.

9-Qubit Square Grid

CNOT_{1,9} with SWAPs

- If the shortest path length between vertices corresponding to c and t in G is ℓ , the naive solution requires about $6(\ell 1)$ CNOT gates.
- This entails a significant increase in CNOT-count.
- Can we reduce the CNOT-count while respecting the connectivity constraint?

We were inspired to use the following techniques.

• Steiner tree problem reduction^{1,2}.

¹Beatrice Nash, Vlad Gheorghiu, and Michele Mosca. "Quantum circuit optimizations for NISQ architectures". In: *Quantum Science and Technology* 5.2 (2020), p. 025010.

²Aleks Kissinger and Arianne Meijer-van de Griend. "CNOT circuit extraction for topologically-constrained quantum memories". In: *arXiv preprint arXiv:*1904.00633 (2019).

³Ketan N Patel, Igor L Markov, and John P Hayes. "Optimal synthesis of linear reversible circuits". In: *Quantum Information & Computation 8.3* (2008), pp. 282–294.

⁴Matthew Amy, Parsiad Azimzadeh, and Michele Mosca. "On the controlled-NOT complexity of controlled-NOT–phase circuits". In: *Quantum Science and Technology* 4.1 (2018), p. 015002.

We were inspired to use the following techniques.

- Steiner tree problem reduction^{1,2}.
- Linear reversible circuits synthesis³.
- Parity network synthesis⁴.

memories".

³Patel, Markov, and Hayes, "Optimal synthesis of linear reversible circuits".

¹Nash, Gheorghiu, and Mosca, "Quantum circuit optimizations for NISQ architectures". ²Kissinger and Griend, "CNOT circuit extraction for topologically-constrained quantum

⁴Amy, Azimzadeh, and Mosca, "On the controlled-NOT complexity of controlled-NOT–phase circuits".

Steiner Tree

Definition

Given a graph $G = (V_G, E_G)$ and a set of vertices $S \subseteq V_G$, a **Steiner tree** $T = (V_T, E_T)$ is a minimum spanning tree such that $S \subseteq V_T$.

Example G is a simple undirected graph.

Terminals: $S = \{1, 6, 7, 11\}.$

A solution to the Steiner tree problem on *G*. Steiner nodes: $V_T \setminus S = \{4, 5, 8\}$ Slice: Partition the circuit based on the locality of H gates.

Build: Re-synthesize the sliced portions so that connectivity is respected and the CNOT count is reduced.

⁵Vlad Gheorghiu et al. "Reducing the CNOT count for Clifford+ T circuits on NISQ architectures". In: *arXiv preprint arXiv:2011.12191* (2020).

Slice

Slice

- Each subcircuit is composed of $\mathcal{G}_{ph} = \{CNOT, T, T^{\dagger}, S, S^{\dagger}, X, Y, Z\}.$
- Calculate the phase polynomial \mathcal{P} and overall linear transformation A_{slice} .

- Each subcircuit is composed of $\mathcal{G}_{ph} = \{CNOT, T, T^{\dagger}, S, S^{\dagger}, X, Y, Z\}.$
- Calculate the phase polynomial \mathcal{P} and overall linear transformation A_{slice} .
- Synthesize a phase polynomial network C_{ph} over \mathcal{G}_{ph} .

Phase Polynomial Network Synthesis

- Each subcircuit is composed of $\mathcal{G}_{ph} = \{CNOT, T, T^{\dagger}, S, S^{\dagger}, X, Y, Z\}.$
- Calculate the phase polynomial \mathcal{P} and overall linear transformation A_{slice} .
- Synthesize a phase polynomial network C_{ph} over G_{ph}.
 Phase Polynomial Network Synthesis
- Calculate the overall linear transformation A_{ph} of C_{ph}.

- Each subcircuit is composed of $\mathcal{G}_{ph} = \{CNOT, T, T^{\dagger}, S, S^{\dagger}, X, Y, Z\}.$
- Calculate the phase polynomial \mathcal{P} and overall linear transformation A_{slice} .
- Synthesize a phase polynomial network C_{ph} over G_{ph}.
 Phase Polynomial Network Synthesis
- Calculate the overall linear transformation A_{ph} of C_{ph}.
- Derive the residual linear transformation $\mathbf{A} = \mathbf{A}_{ph}^{-1} \mathbf{A}_{slice}$.

- Each subcircuit is composed of $\mathcal{G}_{ph} = \{CNOT, T, T^{\dagger}, S, S^{\dagger}, X, Y, Z\}.$
- Calculate the phase polynomial \mathcal{P} and overall linear transformation A_{slice} .
- Synthesize a phase polynomial network C_{ph} over G_{ph}.
 Phase Polynomial Network Synthesis
- Calculate the overall linear transformation A_{ph} of C_{ph}.
- Derive the residual linear transformation $\mathbf{A} = \mathbf{A}_{ph}^{-1} \mathbf{A}_{slice}$.
- Synthesize a linear reversible circuit *C*_{lin} over {*CNOT*, *X*}.

Linear Transformation Synthesis

For an *n*-qubit circuit over $\{CNOT, X\}$, we represent the overall linear transformation using an $n \times (n + 1)$ binary matrix.

Example

For an *n*-qubit circuit over $\{CNOT, X\}$, we represent the overall linear transformation using an $n \times (n + 1)$ binary matrix.

For an *n*-qubit circuit over $\{CNOT, X\}$, we represent the overall linear transformation using an $n \times (n + 1)$ binary matrix.

Example

Linear Transformation Synthesis

Reverse Engineering

- (a) Make b = 0 by applying X to corresponding qubits.
- (b) Carry out an analogue of Gaussian elimination.
- (c) Use Steiner tree to incorporate connectivity constraints.

Linear Transformation Synthesis

Reverse Engineering

- (a) Make b = 0 by applying X to corresponding qubits.
- (b) Carry out an analogue of Gaussian elimination.
- (c) Use Steiner tree to incorporate connectivity constraints.

Example Let A be a linear transformation and G be the connectivity graph.

$$A = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Step 1: Reducing A to Upper Triangular Form

Row Operations I

- (a) Starting from the left most column, fix one column at a time.
- (b) Fixing the *i*th column means applying row operations such that $A_{ii} = 1$ and $A_{ji} = 0$ for every j > i.

- The Steiner tree $T_{1,S}$ with pivot 1 and terminals $S = \{1, 3, 4, 5\}$.
- Invoke a sequence of row operations starting from the last sub-tree T₃.

Step 1: Reducing A to Upper Triangular Form

- Propagate 1 from the root to cancel the 1 at the leaf.
- Cancel the 1s in the intermediate Steiner nodes.
- After traversing subtrees and concatenating CNOTs,

 $\mathcal{Y}_1 = \text{CNOT}_{45}\text{CNOT}_{34}\text{CNOT}_{12}\text{CNOT}_{23}\text{CNOT}_{12}.$

Step 1: Reducing A to Upper Triangular Form

- When CNOT_{j,i} is applied, row j is added to row i mod 2, and row j remains unchanged.
- After a series of row operations, A is reduced to an upper triangular form.

$$A = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix} \xrightarrow{\mathcal{Y}_1} A = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix} \xrightarrow{\mathcal{Y}_2} \dots \xrightarrow{\mathcal{Y}_6} A = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Step 2: Reducing *A*⁺ **to Identity**

Row Operations II

- (a) Starting from the left most column, fix one column at a time.
- (b) Fixing the *i*th column means applying row operations such that $A_{ii} = 1$ and $A_{ji} = 0$ for every j > i.

- A row should be XORed with a row of lower index.
- If not, apply a correction procedure after traversing all sub-trees.

Synthesize Circuits over {*CNOT*, *X*, *T*}

• Consider circuits over the gate set

$$\mathcal{G}_{ph} = \{CNOT, X, T, T^{\dagger}, S, S^{\dagger}, Y, Z\}.$$

• *CNOT* $|x, y\rangle = |x, x \oplus y\rangle$, $T |x\rangle = \omega^{x} |x\rangle$, where $\omega = e^{\frac{i\pi}{4}}$ and $x, y \in \mathbb{F}_{2}$.

Synthesize Circuits over {*CNOT*, *X*, *T*}

• Consider circuits over the gate set

$$\mathcal{G}_{ph} = \{CNOT, X, T, T^{\dagger}, S, S^{\dagger}, Y, Z\}.$$

• *CNOT* $|x, y\rangle = |x, x \oplus y\rangle$, $T |x\rangle = \omega^x |x\rangle$, where $\omega = e^{\frac{i\pi}{4}}$ and $x, y \in \mathbb{F}_2$.

Example

Synthesize Circuits over {*CNOT*, *X*, *T*}

Consider circuits over the gate set

$$\mathcal{G}_{ph} = \{CNOT, X, T, T^{\dagger}, S, S^{\dagger}, Y, Z\}.$$

• *CNOT* $|x, y\rangle = |x, x \oplus y\rangle$, $T |x\rangle = \omega^x |x\rangle$, where $\omega = e^{\frac{i\pi}{4}}$ and $x, y \in \mathbb{F}_2$.

Phase Polynomial Network [Amy et al., 2014]

• A *representation* of linear reversible functions: $\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$.

Phase Polynomial Network [Amy et al., 2014]

- A *representation* of linear reversible functions: $\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$.
- A phase polynomial set: $\mathcal{P} = \{(1, x_1), (1, x_3 \oplus x_4), (1, x_3), (1, x_1 \oplus x_2 \oplus x_3 \oplus x_4), (7, x_2)\}.$

Phase Polynomial Network [Amy et al., 2014]

• A *representation* of linear reversible functions:
$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$
.

- A phase polynomial set: $\mathcal{P} = \{(1, x_1), (1, x_3 \oplus x_4), (1, x_3), (1, x_1 \oplus x_2 \oplus x_3 \oplus x_4), (7, x_2)\}.$
- A *phase polynomial network*: a 4-qubit circuit over $\{CNOT, X, T\}$ such that for every $(c, f) \in \mathcal{P}$, f appears before a gate in $\{T, T^{\dagger}, S, S^{\dagger}, Y, Z\}$.

- (a) Calculate a parity network matrix M to represent \mathcal{P} .
- (b) Construct Steiner tress to impose connectivity constraints.
- (c) Synthesize a circuit over $\{CNOT, X\}$ that realizes each column in M.
- (d) Apply $\{T, T^{\dagger}, S, S^{\dagger}, Y, Z\}$ depending on the coefficients of the parity terms $(c, f) \in \mathcal{P}$.

We simulated benchmarks and random circuits on five popular architectures such as (1) 9-qubit square grid, (2) Rigetti 16-qubit Aspen, (3) 16-qubit square grid, (4) 16-qubit IBM QX5, and (5) 20-qubit IBM Tokyo.

(2) Rigetti 16Q-Aspen

(3) 16q-Square Grid

Compare the Increase in CNOT-Count

Architecture	#Qubits	Initial	SWAP-template	Slide-and-Build	
		count	Count	Count	Time
9q-square	9	3	560%	0%	0.184s
		5	612%	146%	0.146s
		10	594%	105%	0.167s
		20	546%	176%	0.2s
		30	596%	185%	0.233s
16q-square	16	4	1050%	238%	0.23s
		8	840%	146%	0.27s
		16	818%	158%	0.43s
		32	853%	341%	0.41s
		64	893%	221%	0.49s
		128	859%	211%	0.57s
		256	897%	238%	0.72s
rigetti-16q-aspen	16	4	1680%	355%	0.23s
		8	1740%	253%	0.396s
		16	1620%	351%	0.47s
		32	1794%	470%	0.48s
		64	1755%	399%	0.66s
		128	1761%	368%	0.58s
		256	1757%	411%	0.61s

Compare the Increase in CNOT Count

Architecture	#Qubits	Initial	SWAP-template	Slide-and-Build	
		count	Count	Count	Time
9q-square	9	3	560%	0%	0.184s
		5	612%	146%	0.146s
		10	594%	105%	0.167s
		20	546%	176%	0.2s
		30	596%	185%	0.233s
16q-square	16	4	1050%	238%	0.23s
		8	840%	146%	0.27s
		16	818%	158%	0.43s
		32	853%	341%	0.41s
		64	893%	221%	0.49s
		128	859%	211%	0.57s
		256	897%	238%	0.72s
rigetti-16q-aspen	16	4	1680%	355%	0.23s
		8	1740%	253%	0.396s
		16	1620%	351%	0.47s
		32	1794%	470%	0.48s
		64	1755%	399%	0.66s
		128	1761%	368%	0.58s
		256	1757%	411%	0.61s

Compare the Increase in CNOT Count

Architecture	#Qubits	Initial	SWAP-template	Slide-and-Build	
		count	Count	Count	Time
ibm-qx5	16	4	1260%	173%	0.38s
		8	1035%	295%	0.36s
		16	1043%	283%	0.41s
		32	1179%	398%	0.42s
		64	1131%	339%	0.45s
		128	1111%	345%	0.575s
		256	1141%	380%	0.73s
ibm-q20-tokyo	20	4	525%	128%	0.186s
		8	555%	275%	0.295s
		16	570%	88%	0.37s
		32	501%	154%	0.55s
		64	543%	137%	0.54s
		128	540%	141%	0.645s
		256	535%	125%	0.72s

- We designed a heuristic algorithm that reduces the CNOT count in Clifford+T circuits while accounting for the connectivity constraints.
- It's possible to improve the results by optimizing the initial mapping from logical qubits to physical qubits.
- Moving forward, we would like to rigorously benchmark against other compilers such as tket by CQC and Qiskit by IBM.

Thank you!

Avoid Disturbing 0s' in Upper Triangle

- A node (row) should be XORed with a row with a higher-index.
- If not, apply a correction procedure after traversing all sub-trees.

- Take the shortest path from 5 to 4 and apply the same traversals: $CNOT_{54}$
- The parity at 4 becomes $x'_4 \oplus x'_5 = (x_5 \oplus x_4) \oplus (x_2 \oplus x_5) = x_4 \oplus x_2$.

PHASE-NW-SYNTH Algorithm Snapshot

- Ignore the last two rows of P, let $B = \{p'_1, p'_2, p'_3, p'_4, p'_5, p'_6, p'_7\}$, K be an empty stack, and I = [6].
- Cycle through the set of *n*-bit strings and apply corresponding *CNOT* gates at each iteration.
- Whenever a column has a single 1, it implies that the corresponding parity has been realized.

Example After the 4th iteration, we have

$$B^{(4)} = \begin{bmatrix} \frac{p_1'}{1} & \frac{p_2'}{0} & \frac{p_3'}{0} & \frac{p_4'}{1} & \frac{p_5'}{1} & \frac{p_6'}{1} & \frac{p_7'}{0} \\ 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

PHASE-NW-SYNTH Algorithm Snapshot

- Whenever a column has a single 1, it implies that the corresponding parity has been realized.
- Remove these columns from the remaining parities.
- Place the gate X if parity realized on circuit is 1 ⊕ f for some (c, f) ∈ P. We can also place a gate in {T, T[†], S, S[†], Z, Y} corresponding to the value of the coefficient c.

Example The partial circuit obtained after applying a sequence of gates from iteration 4.

$$B^{(4)} = \begin{bmatrix} \frac{p_1'}{1} & \frac{p_2'}{0} & \frac{p_3'}{0} & \frac{p_4'}{1} & \frac{p_5'}{1} & \frac{p_6'}{1} & \frac{p_7'}{1} \\ 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix} \qquad \begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\$$